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Active hydraulics and odd elasticity of 
muscle fibres

Suraj Shankar    1,2  & L. Mahadevan    1,3,4 

Muscle is a complex, hierarchically organized, soft contractile engine. To 
understand the limits on the rate of contraction and muscle energetics, 
we construct a coarse-grained multiscale model that describes muscle as 
an active sponge. Our analysis of existing experiments across species and 
muscle types highlights the importance of spatially heterogeneous strains 
and local volumetric deformations. Our minimal theoretical model shows 
how contractions induce intracellular fluid flow and power active hydraulic 
oscillations, yielding the limits of ultrafast muscular contractions. We 
further demonstrate that the viscoelastic response of muscle is naturally 
non-reciprocal—or odd—owing to its active and anisotropic nature. This 
enables an alternate mode of muscular power generation from periodic 
cycles in spatial strain alone, contrasting with previous descriptions based on 
temporal cycles. Our work suggests a revised view of muscle dynamics that 
emphasizes the multiscale spatiotemporal origins of soft hydraulic power, 
with potential implications for physiology, biomechanics and locomotion.

Muscle is the primary driver of nearly all motion across the animal 
kingdom. Since the pioneering work by H. E. Huxley, A. F. Huxley and 
others1,2, much work has focused on the molecular aspects of the con-
tractile machinery, for example, actomyosin motor kinetics3–5 and 
calcium signalling6. But muscle fibres are spatially and hierarchically 
organized across multiple scales7 (Fig. 1a) with complex structural and 
mechanical properties: striated muscle fibres are soft, wet and active 
materials composed of a dense, anisotropic and actively contract-
ing polymeric lattice (sarcomeres forming the myofibril), bathed in 
cytosol. Water, although the dominant component of muscle fibres 
(70–90% by volume7,8), is assumed to play a passive role, subservient 
to biochemical processes. In recent years, however, intracellular fluid 
flows have increasingly been recognized for their central role in dictat-
ing cellular morphology, motility and physiology9,10—for example, in 
rapid non-muscular movements in plants11.

As muscle can operate at frequencies ranging between 102 and 
103 Hz (refs. 12,13), with power outputs of ~5–500 W kg−1 (ref. 14), it natu-
rally raises questions about the biophysical mechanisms underlying 
the dynamical limits of performance. Given the large fraction of water 
in muscle, here we investigate the potential role of spatial hydraulic 

effects in the dynamics of contracting muscle fibres. In Fig. 1b we show 
a coarse-grained view that suggests how muscle fibres behave as an 
active fluid-filled sponge. When a muscle fibre contracts, there must be 
relative and spatially inhomogeneous movement of the actomyosin fila-
ment lattice relative to the ambient fluid (due to global incompressibil-
ity in the presence of an intact sarcolemma). Local deformations must 
squeeze fluid through the pores of the myofilament lattice, although 
the dynamical consequences of this process are typically neglected 
as most in vitro studies focus on glycerinated (permeabilized) muscle 
fibres that allow free drainage of fluid8.

Early experiments by Szent-Györgi15,16 on extracted actomyosin 
threads highlighted the syneresis associated with expelling water as 
they ‘violently contract’ (Fig. 1c), and other studies have noted water 
movements in muscle due to osmolytes, contractions and so on17,18. 
Since then, molecular studies have shown that active crossbridges 
produce both longitudinal and transverse (radial) strains; the latter 
lead to sarcomere volume change19 and fluid redistribution. Spatially 
non-uniform strains (Fig. 1d) have also been associated with intact 
muscle fibre contractions ex vivo20,21 and in vivo22, suggesting that 
the concomittant pressure and hydraulic flows may all be relevant 
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parameters, and highlights general biophysical principles about cel-
lular constraints on muscular performance limits.

We do this by adapting the theory of poroelasticity, which 
describes fluid-filled porous elastic materials32. In Fig. 1b we present 
our generalization of this framework that integrates molecular acto-
myosin kinetics with anisotropic elasticity, activity and flow to describe 
muscle fibres as a self-squeezing sponge.

Biophysical model
We model the muscle fibre as a cylinder (length L, radius R) lying along 
the ẑ axis, made of a biphasic mixture of an active porous solid (ϕ: solid 
fraction) immersed in fluid (1 − ϕ: fluid fraction). The interdigitated 
arrangement of filaments and flexible proteins endows the sarcomere 
with a uniaxially anisotropic elastic stress (σel) that is linearly related 
to the strain tensor ϵ = [∇u + (∇u)T]/2 (displacement u = ur ̂r + uzẑ, with 
radial 𝑢r and axial 𝑢z components, assuming axisymmetry), where the 
drained elastic moduli are functions of ϕ (see Supplementary Section 
IA for details). The passive elastic response of the porous solid is both 
anisotropic and compressible, approaching the incompressible limit 
only as ϕ → 1. In addition to the passive stress, molecular interactions 
between the thick (myosin) and thin (actin) filaments lead to an active 
stress (σa). The fluid stress in the composite is dominated on large scales 
by an isotropic pressure p, whose gradients drive a flow velocity (v) 
with viscous dissipation being consequential only on the scale of the 
hydraulic pore size ℓp ≈ 20–55 nm (refs. 7,8) (see Supplementary Section 
IA for details). We emphasize that viscous forces are important on small 
scales, not because they balance individual motor forces (they do 
not1,31), but because they balance large-scale spatial gradients (~1/L) of 
the active stress. Mass and momentum conservation then collectively 
dictate overall force balance, global incompressibility and force bal-
ance in the fluid as follows (see Supplementary Section IA for details):

∇∇∇ ⋅ [ϕ(σa + σel) − (1 − ϕ)p1] = 0 , (1)

dynamically. Recent optical and X-ray scattering experiments prob-
ing the rapid dynamics of the myofilament lattice23–28 further quantify 
these observations.

A reanalysis of data on active oscillations of muscle fibres from 
experiments on different muscle types and species allowed us to obtain 
time traces of local transverse (ϵ⊥) and longitudinal (ϵzz) strains in 
the sarcomere (Fig. 2; see Supplementary Section VA for details). 
As an example, in Fig. 2a,b we show that the contractile oscillations 
with frequency ω ≈ 1 Hz in glycerinated skeletal muscle fibres (rabbit 
psoas23,24) lead to strains that are not volume preserving; that is, they 
are non-isochoric (Fig. 2, black line) despite the fibres being permea-
bilized. This is probably because the fibres are slender enough to lack 
radial gradients in deformation (Supplementary Section IIIB). In vivo 
measurements of the sarcomere geometry in intact asynchronous 
flight muscle of Drosophila25,26 show that the lattice contracts with a 
constant lattice spacing26, hence ϵ⊥ ≈ 0 under natural flight conditions 
(wing-beat frequency ω ≈ 156 Hz; Fig. 2c). Intact synchronous flight 
muscle of Manduca sexta also displays periodic lattice dilations and 
contractions under physiological conditions (ω ≈ 25 Hz; Fig. 2d), both 
in vivo28 and ex vivo27. In all of the above examples (with and without 
a membrane), the deforming myofilament lattice fails to preserve 
its local volume (ϵzz + ϵ⊥ ≠ 0), implying that there must be fluid move-
ment through the sarcomere consistent with spatiotemporal strain 
heterogeneities.

In light of the evidence summarized above, we need to build a 
model that captures and explains the three-dimensional (3D) and 
volumetric deformations in muscle fibres. Current approaches employ 
detailed, spatially explicit computational models of muscle contrac-
tion (see refs. 7,29 and references therein) and have begun to include 
the role of fluid flow27,30,31, but largely ignore the multiscale, elastic, 
active and spatial aspects of the problem. Here we adopt a comple-
mentary perspective by developing a minimal continuum model that 
identifies the relevant coarse-grained variables and key dimensionless 
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Fig. 1 | Muscle fibres are multiscale soft, wet, active engines. a, Striated muscle 
consists of long, multinucleated fibres that span several spatial scales, ranging 
from the contractile machinery in periodically repeating sarcomeres (~1 μm) to 
macroscopic fibres that can span 1–10 cm. b, A multiscale mathematical model 
of muscle fibres (equations (1)–(5)). On the molecular scale (left), stochastic 
binding of myosin motor heads to actin generates a contractile force (Fm) upon 
hydrolysing ATP, with both radial and axial components for a finite crossbridge 
binding angle (θ0). Kinetic rates (ωon/off) decrease with increasing interfilament 
spacing (h) and Fm, with κ and β > 0 measuring the linearized feedback at rest and 
under stall conditions, respectively (see Supplementary Section I for details). On 

the mesoscale (right), the myofilament lattice is an anisotropic elastic network 
with an elastic modulus E and pore size ℓp that is permeated by a fluid of viscosity 
η and contracts due active stresses (σa). c, Actomyosin threads contract by 
expelling water, changing both shape and size when placed in boiled muscle 
juice, a source of ATP. d, In vivo contraction of an electrically stimulated skeletal 
muscle (murine gastrocnemius) displaying spatial strain heterogeneities (right: 
heatmap of the 2D areal strain) measured using the stained nuclei as fiducial 
markers (green, undeformed; red, deformed). Panels adapted with permission 
from: c, ref. 16, Springer Nature; d, ref. 22, Elsevier. Panel a created using Servier 
Medical Art images (muscle fibre and actin) from Bioicons.
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∇∇∇ ⋅ [ϕ∂tu + (1 − ϕ)v] = 0 , (2)

(1 − ϕ)(v − ∂tu) = −
ℓ2p
η
K ⋅∇∇∇p , (3)

where η is the fluid viscosity and K(ϕ) = K∥(ϕ)ẑẑ + K⟂(ϕ)(1 − ẑẑ)  is a 
ϕ-dependent anisotropic permeability tensor (see Supplementary 
Section IA for details). We note that the anisotropic structure of the 
sarcomere ensures that the lattice becomes radially impermeable to 
fluid flow (K⊥ → 0 when ϕ ≈ 0.91, see Supplementary Section IA for 
details) before becoming incompressible (ϕ → 1). Hence volumetric 
deformations leading to intracellular flow are inevitable for all physi-
ologically relevant ϕ ≈ 0.1–0.22 (refs. 7,8).

To complete the formulation of the problem, we need to determine 
the active stress σa that depends on the action of the actomyosin engine. 
In terms of a simple two state model where nm(x, t) is the coarse-grained 
fraction of bound myosin motors and 〈y〉(x, t) is the average extension 
of the motor head at a given time t and position x in the cell, the coupled 
dynamics of the actomyosin crossbridges is then given by (see Sup-
plementary Section IB for details):

∂tnm = ωon(ϵ⟂)(1 − nm) − ωoff(⟨y⟩)nm , (4)

∂t⟨y⟩ = y0 (λ∥∂tϵzz + λ⟂∂tϵ⟂) − ωon(ϵ⟂) (
1 − nm
nm

) (⟨y⟩ − y0) , (5)

where y0 ≃ 8–10 nm (ref. 1) is the motor displacement generated during 
the power stroke and λ∥ and λ⊥ are factors associated with the geom-
etry of the binding crossbridge33,34 (see Supplementary Section IB for 

details). In Fig. 1b (see Supplementary Section IB for details) we show 
how to account for feedback through the known load-dependent 
unbinding rate (ωoff(〈y〉)) (ref. 35) via stretch activation36 and a strain- or 
lattice-spacing-dependent binding rate (ωon(ϵ⊥)) (refs. 8,33,37) that 
allow the length-based regulation of force underlying the well-known 
Frank–Starling law2. As ωon/off represent effective coarse-grained kinetic 
rates, we did not distinguish between different microscopic mecha-
nisms of feedback. Assuming that the myosin head behaves like a spring 
with stiffness km, size dm and a linear density N along the thick filament, 
the active contractile force density is Fm = −kmnm〈y〉, which gives rise 
to an anisotropic active stress σa = −NdmFm [cos2θ0ẑẑ + (sin2θ0/2)  
(1 − ẑẑ)]. The active stress importantly includes both axial and radial 
components of the active force, which are governed by the average 
crossbridge binding angle θ0 (refs. 33,34) (Fig. 1b; see Supplementary 
Section IB for details). Equations (1)–(5), supplemented by appropriate 
boundary and initial conditions, complete the specification of our 
multiscale continuum model.

Active hydraulic oscillations
To understand the dynamical consequences of the model, we consider 
two simple limits. In the passive, isotropic limit (σa = 0, K∥ = K⊥), we 
recover the classical result32 that p equilibrates diffusively over L on a 
poroelastic timescale τp ≈ (η/E)(L/ℓp)

2 (see Supplementary Section II 
for details), that combines the rheological (η, E) with the microstruc-
tural (ℓp). Anisotropy generalizes this result by distinguishing axial 
from radial flow.

In contrast, in the active case, upon neglecting spatial heterogenei-
ties and fluid flow (∇p ≃ 0), our model matches previous kinetic theo-
ries of molecular motor assemblies38, where the kinetic timescale 
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Fig. 2 | Volume changes and strain cycles are generic in self-oscillating 
muscle. Left, volume changes, with time period T. Right, strain cycles.  
a,b, Skinned rabbit psoas muscle fibres exhibit spontaneous sarcomeric 
oscillations in vitro under different ATP concentrations and sarcomere resting 
lengths23,24: at low ATP concentrations (a) ϵzz (blue) and ϵ⊥ (red) oscillate 
nearly antiphase with frequency ω ≈ 0.6 Hz (ref. 24), whereas at higher ATP 
concentrations (b), faster oscillations (ω ≈ 1 Hz) develop a strain cycle23 that 
encloses a significant (signed) area (see Supplementary Section VA). The 
direction of cycling is shown by the red arrow. c, In vivo measurements of 
strain in asynchronous flight muscle (DLM, dorsal longitudinal) of a fruit fly in 
tethered flight (ω ≈ 156 Hz)25,26 (see Supplementary Section VA for details) from 

time-resolved optical and X-ray measurements showing negligible ϵ⊥ ≈ 0. d, Ex 
vivo measurements of strain in intact synchronous flight muscle (DLM) from 
M. sexta (hawkmoth)27, displaying non-isochoric strain cycles. The isolated, 
whole muscle is subject to oscillatory stretch (4% axial strain, ω = 25Hz) and 
electrical stimulation (activation phase of 0.5), matching physiological in vivo 
conditions. Deformations in a–d are generically not isochoric (ϵzz + ϵ⊥ = 0, black 
line) and as a result fluid flow is inevitable. The data are presented as mean with 
shaded regions and error bars in a–c denoting 1 s.d. from averaging over multiple 
periods and error bars in d the 95% confidence intervals (sample size is 1 in all). 
See Supplementary Section VA for further details of the analysis. Credit: animal 
silhouettes, PhyloPic.
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τk = [ωon + ωoff(y0)]
−1 (see Supplementary Section II for details) con-

trols the residence time of bound motors and the rate of build-up of 
active stress. In this situation, if the load-dependent feedback is strong 
enough ( y0τkω′

off
(y0) > 1), the molecular reaction develops an oscilla-

tory instability with a characteristic frequency ω ≈ 1/τk (see Supplemen-
tary Section III for details). Combining the two limits, and noting that 
in an anisotropic fibre radial flow dominates axial flow, a key dimension-
less parameter emerges—the radial poroelastic Damköhler number:

Da⟂ =
η

K⟂Eτk
( R
ℓp
)
2

, (6)

which captures the relative importance of radial fluid permeation (a 
mesoscopic time) in actomyosin kinetics (a molecular time). A simi-
lar measure for axial flow can also be constructed (Supplementary 
Section II). Assuming typical values for E ≈ 0.1–10 MPa, η ≈ 10−3 Pa s, 
ℓp ≈ 20–60 nm, τk ≈ 1–10 ms and R ≈ 5–100 μm (refs. 6,8,39), we obtained 
a wide range of Da⊥ ≈ 10−2–103 that is accessible to, and seems to be 
exploited by, the evolutionary range of muscle physiology (Fig. 3b).

When the above effects are all incorporated, an oscillatory instabil-
ity appears that relies on ‘active hydraulics’—that is, a feedback loop 
coupling poroelastic fluid flow, actives stresses, molecular kinetics 
and spatial strain gradients (Fig. 3a). Here, a local build-up of active 
stress (on timescale τk) squeezes the sarcomere, forcing fluid to flow 
and distend neighbouring regions of the lattice (on timescale τp), which 
in turn induces further build-up of myosin via spatial variations in 
stretch activation. To see this, a minimal one-dimensional (1D) descrip-
tion with ϵ⊥ = 0 suffices (appropriate for Drosophila flight muscle26). 
Axial force balance along the muscle fibre implies that 
∂z[ϕ(σazz + Eϵzz) − (1 − ϕ)p] = 0, whereas poroelastic flow dictates that 
∂tϵzz = K∥(ℓ2p/η)∂2zp . Considering the slowest modes on scale of the 
fibre (L), these equations together (see Supplementary Section IIIA for 
details) yield τp∂tϵzz ≈ −[ϵzz + σazz/E]. In the limit where the active stress 
is bound to the density of bound motors (see Supplementary Section 
IIIA for details), we can write σazz ≈ nm and linearize the kinetics about 
the steady-state motor density (nm = n0m + δnm, n0m = ωonτk) to obtain 
∂tδnm = −δnm/τk − βλ∥n

0
m∂tϵzz, which includes the feedback mecha-

nism through β = y0ω
′
off
(y0)/ωoff(y0) > 0 (see Supplementary Section 

IIIA for details). With strong enough activity the coupled dynamics 
undergoes a Hopf bifurcation, resulting in the spontaneous emergence 
of active hydraulic oscillations with a characteristic frequency 

ω ≈ 2π/√τkτp  that predicts the fruit fly wing-beat frequency ω ≃ 150–
160 Hz when using estimates of τk ≈ 0.3 ms (ref. 4) and τp ≈ 5–6 s (see 
Supplementary Section IIIA for details).

For general 3D deformations, fluid is more easily shunted radially 
(rather than axially) due to a smaller hydraulic resistance across a slender 
fibre (R2/K⊥ ≪ L2/K∥) and the reduced permeability of Z disks, a feature 
that survives the inclusion of heterogeneity in pore size. Hence, the radial 
(that is, fastest) poroelastic time (not the slowest) controls pressure 
relaxation and is hydraulically rate-limiting. On extending the previous 
1D instability calculation to allow for radial flow, spontaneous oscillations 
emerged with a scaled characteristic frequency (for large Da⊥):

ωτk ∝
1

√Da⟂
, (7)

that involves both the kinetic and poroelastic timescales; a careful 
calculation shows that this phenomenon persists more generally (see 
Supplementary Section III for details). Strikingly, spatiotemporal volu-
metric deformations trigger active hydraulic oscillations (inevitable 
for Da⊥ ≥ 1), even when the instability mechanism is kinetic (see Sup-
plementary Section III for details), hence offering a natural explanation 
for the experimental data in Fig. 2. Thus we see that active hydraulics, 
rather than just kinetics, determines the fastest rate of spontaneous 
muscle contraction; in Fig. 3b we plot the scaling relation in equation 
(7) and compare it with existing experimental data on muscular con-
tractions across the animal kingdom.

Using representative estimates of the poroelastic, kinetic and con-
traction timescales in fast sonic (blue), flight (red), cardiac (orange) and 
skeletal (green) muscles (see Supplementary Section VB and Supple-
mentary Table 1 for details), we found that while synchronous muscles 
are typically dominated by kinetics (Da⊥ < 1, blue shaded region), asyn-
chronous muscles responsible for insect flight are often hydraulically 
dominated (Da⊥ ≥ 1, red shaded region), and the data are consistent 
with the maximal contraction rate being set by active hydraulics. As 
our analysis focuses on rate limitations intrinsic to muscle fibres, we 
neglected constraints set by neural and calcium signalling that only 
affect microscopic kinetics, and can be surpassed in ultrafast contrac-
tions (for example, in asynchronous insect flight muscle)39. Direct 
measurements of spatial gradients of deformation and intracellular 
fluid flow in contracting muscle in the presence and absence of extrinsic 
control would provide a concrete test of these predictions.
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Fig. 3 | Active hydraulics limits muscular contraction rates. a, Active hydraulic 
oscillations involving a periodic build-up of spatial gradients in active stresses 
along with fluid flow occur generically with a frequency ω ≈ 1/√τkτp  that 
combines the fast τk with the slow τp. b, Characteristic oscillation frequencies of 
contractions in fast sonic (blue), flight (red), cardiac (orange) and skeletal (green) 
muscles across species plotted against the estimated Da⊥ (equation (6)). The data 
are compiled in Supplementary Table 1 and presented as geometric means with 
the error bars representing the full range of estimated parameters. Active 

hydraulic oscillations dominate for Da⊥ ≥ 1 (red shaded region) with the 
theoretical scaling limit ωmax from equation (7) plotted (dashed line with constant 
q0 ≃ 3.83 computed for the longest wavelength radial mode; see Supplementary 
Section VB and Supplementary Fig. 2 for details). When Da⊥ ≪ 1 (blue shaded 
region), flow is irrelevant and kinetics dominates, so the oscillation frequency 
saturates. The data are consistent with our prediction of active hydraulics setting 
the ultimate limit on muscle contraction rates. Credit: animal silhouettes, 
Pixabay (cicada and waterbug) and PhyloPic (all others).
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Non-reciprocal mechanics of an odd elastic 
engine
Spatial 3D deformations also have unusual mechanical and energetic 
implications for muscle. The mechanical response of muscle is quanti-
fied by a time- or frequency-dependent relation between the total stress 
(σij) and strain (ϵij) tensors. For small sinusoidal deformations with 
frequency ω, a linear response gives σij(ω) = 𝒜𝒜ijkl(ω)ϵkl(ω) , as shown 
pictorially in Fig. 4a for shear and isotropic components (see Supple-
mentary Section IV for details). The complex modulus tensor 𝒜𝒜 includes 
both an elastic (in-phase) response Re[𝒜𝒜] and a viscous (out-of-phase) 
response Im[𝒜𝒜].

In passive systems, time-reversal symmetry enforces 𝒜𝒜ijkl(ω) = 
𝒜𝒜klij(ω)40, but in active materials like muscle, energy non-conservation 
allows non-reciprocal moduli (called odd (visco)elasticity41 in chiral 
and active media) that violate a fundamental property of mechanics 
quantified eponymously as Maxwell–Betti reciprocity40. An explicit 
calculation using our dynamical model (equations (1)–(5)) uncovers 
the presence of a non-reciprocal odd modulus ζ(ω) (Fig. 4a), in addi-
tion to activity corrected bulk (Beff(ω)), Young’s (Yeff(ω)) and aniso-
tropic (C(ω)) passive moduli; see Supplementary Section IV. In the 
simplifying limit of horizontal motor binding (θ0 = 0), the odd modu-
lus is given by:

ζ(ω) = −ϕNdmFstall (
1 − n0m

n0m
)
|ω′
on(0)|τk
1 + iωτk

, (8)

where Fstall = kmy0n
0
m is the average stall force and n0m = ωon(0)τk is the 

zero-load bound motor fraction (duty-ratio). Equation (8) reveals that, 
microscopically, odd elasticity originates from the strain-dependent 
kinetics of a crossbridge (Fig. 4b). As the binding rate depends on the 

filament spacing (h), a small radial stretch (δh) modifies the active axial 
force (Fz = Fstall − koδh), but an axial stretch (δℓ) generates no radial force 
(F⊥ = 0). This asymmetric elastic response, quantified by an odd spring 
constant ko ∝ Fstall|ω′

on(0)|τk ≠ 0 , underlies the macroscopic odd 
modulus (ζ ∝ −ko) and is present in most microscopic crossbridge mod-
els (for example, refs. 7,23,29 and references therein). It is worth empha-
sizing that spatial anisotropy and activity are sufficient for odd (visco)
elasticity to emerge in muscle even without chiral effects that are often 
invoked42. Interestingly, the possible presence of such an odd modulus 
in muscle was noted in passing in old work43, although its implications 
were unrecognized.

A unique consequence of non-reciprocal mechanics is the ability 
to generate work from cycles of strain (Fig. 4c,d). The odd modulus 
violates energy conservation, so mechanical work becomes history 
dependent. For a single crossbridge, a quasistatic deformation cycle 
generates non-zero work W = − ∮(Fzdℓ + F⊥dh) equal to ko times the area 
enclosed by the strain cycle (Fig. 4c). A conventional work loop analysis 
(that is, area enclosed by the force-displacement curve)44 recapitulates 
the same result, provided that all deformations and forces are correctly 
accounted for (Fig. 4c). For a macroscopic fibre, cyclic contractions at 
frequency ω generate work W = −∮σijdϵij = Weven + Wodd (W > 0: work 
produced, W < 0: work dissipated) that includes two terms—a 
strain-rate-dependent viscous term Weven = −∮dt (Im[𝒜𝒜e

ijkl]/ω) ̇ϵij ̇ϵkl  
and a strain-dependent odd elastic term Wodd = ∮Re[𝒜𝒜o

ijkl]ϵkldϵij (see 
Supplementary Section IV for details). The even and odd moduli are 
𝒜𝒜e,o

ijkl = (𝒜𝒜ijkl ±𝒜𝒜klij)/2. While Weven is simply an anisotropic generaliza-
tion of standard viscous dissipation (Im[𝒜𝒜𝒜𝒜𝒜𝒜]/ω  is like a viscosity), an 
intuitive explanation for Wodd is that, in the absence of energy conserva-
tion, cyclic deformations in different directions do not bring the system 
back to its initial energy, hence work can be either produced or 
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produces active work from cycles of axial and radial strains. The work done by 
the odd modulus (Wodd, equation (9)) is proportional to Re[ζ] and the signed area 
enclosed by the closed loop in strain space.
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absorbed. In the axisymmetric limit relevant for muscle, we can simplify 
Wodd as (see Supplementary Section IV for details):

Wodd =
Re[ζ]
2

∮[ϵzzdϵ⟂ − ϵ⟂dϵzz] , (9)

that is, work from odd elasticity depends on ζ and the area enclosed by 
a loop in the space of axial and transverse strains (Fig. 4d). Crucially, 
this mechanism of power generation relies on 3D spatial deformations 
(axial and radial), rather than temporal variations.

As a 3D characterization of muscle’s viscoelastic response is not 
yet available, we use our model to analyse experiments45–47 that meas-
ured the 1D uniaxial response (σzz) of skinned muscle fibres subject to 
small-amplitude oscillatory axial strains (ϵzz). Hydraulic effects were 
assumed to be irrelevant here as the fibres were permeabilized. By 
compiling data across muscle types and species (Drosophila insect 
flight45, mouse cardiac46 and rabbit skeletal47), we fit our biophysical 
model to the measured Yeff(ω) = σzz(ω)/ϵzz(ω) (Fig. 5; see Supplementary 
Section VC for analysis details).

All three cases show a common behaviour: the elastic modulus 
(Re[Yeff], green in Fig. 5) has a low-frequency stiffness, a high-frequency 
rigor response due to crosslinked actomyosin and intermediate soften-
ing on timescales when crossbridge cycling allows filaments to slide. 
The viscous modulus (Im[Yeff], magenta in Fig. 5) is negative at low 
frequency (hence active and work-producing), switching to positive 
(dissipative) values at higher frequencies (skeletal muscle displays 
additional features at low frequency arising from passive dissipation 
in sarcomeric polymers that we neglected; right panel of Fig. 5). In 
the 1D setting, the negative viscous modulus offers the only route to 
produce positive work through temporal changes in strain, and odd 
elastic effects are absent.

Using our model fit and known structural parameters, we esti-
mated the frequency-dependent Re[ζ] for various muscle types (blue 
lines in Fig. 5; see Supplementary Section VC for details). Notably, the 
odd modulus is predominantly negative and it remains non-vanishing 
at low frequencies (equation (8)). Strain cycles (enclosing negative 
area) in spontaneous muscle contractions (Fig. 2b,d), have been inter-
preted as a time-varying Poisson ratio27, but when combined with our 
prediction of Re[ζ] < 0 and equation (9), these cycles are predicted to 
perform active work Wodd ≈ 0.2–20 kPa. Assuming an operation fre-
quency ω = 10 Hz and muscle mass density ρm = 103 kg m−3, we estimated 
the mass-specific power output Podd = ωWodd/ρm ≈ 2–200 W kg−1, which 
can be significant in physiological conditions14. Our predictions of odd 
elasticity can be directly tested by measuring the 3D structural and 

force dynamics of muscle fibres using a combination of X-ray-based 
methods19,25,28 and force spectroscopy techniques48.

Discussion
Recognizing the importance of spatial strain gradients and fluid dynam-
ics naturally leads to an emergent maximal rate of muscle contraction 
ωmax based on active hydraulic oscillations that combines molecular, 
microstructural, macrogeometric and material properties through two 
timescales, τk and τp. Our analysis of published 3D spatial deformation 
data complements previous temporal studies of muscle rheology and 
highlights how muscle functions as an active elastic engine, whereby 
work can be produced from strain cycles via an emergent non-reciprocal 
response naturally present in anisotropic active solids.

We can estimate the maximal power density Pmax using a 
(size-independent) maximal strain (εmax) and stress (σmax) of muscle49, 
Pmax ≈ σmaxεmaxωmax. When molecular kinetics dominates (Da⊥ < 1, 
ωmax ≈ 1/τk), muscular power is not constrained by size (Pmax ∝ L0). In the 
active hydraulic regime, however, (Da⊥ > 1, ωmax ≈ 1/√τkτp ), Pmax 
decreases with size (∝1/L), so larger organisms may need additional 
spring-based mechanisms to amplify power output50. Further work 
incorporating the tissue-scale response, neural control, Ca2+ signalling, 
inertial loading response and so on is required to understand the gen-
erality of the phenomena studied here and to connect with more mac-
roscopic approaches to comparative biomechanics51.

Beyond muscle, the principles of active hydraulics may also apply 
to other soft contractile systems. For example, most current soft mus-
cle mimetic actuators52 have contraction rates that are greatly limited 
by the slow propagation of a diffusive actuation signal, with ωmax ≈ 1/L2 
(ref. 53). Our work suggests that if soft actuators were triggered inter-
nally, rather than externally, then active hydraulics enables an alternate 
mechanism for faster contractions with ωmax ≈ 1/L. Indeed, this general 
principle of using local sensing and actuation might be the key to 
designing faster, stronger and more resilient actuators.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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