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Gut physiology and environment explain 
variations in human gut microbiome 
composition and metabolism

Nicola Procházková    1, Martin F. Laursen    2, Giorgia La Barbera    1, 
Eirini Tsekitsidi3, Malte S. Jørgensen    1, Morten A. Rasmussen4,5, 
Jeroen Raes    6,7, Tine R. Licht    2, Lars O. Dragsted    1 & Henrik M. Roager    1 

The human gut microbiome is highly personal. However, the contribution of 
gut physiology and environment to variations in the gut microbiome remains 
understudied. Here we performed an observational trial using multi-omics 
to profile microbiome composition and metabolism in 61 healthy adults for 
9 consecutive days. We assessed day-to-day changes in gut environmental 
factors and measured whole-gut and segmental intestinal transit time  
and pH using a wireless motility capsule in a subset of 50 individuals.  
We observed substantial daily fluctuations, with intra-individual variations in 
gut microbiome and metabolism associated with changes in stool moisture 
and faecal pH, and inter-individual variations accounted for by whole-gut 
and segmental transit times and pH. Metabolites derived from microbial 
carbohydrate fermentation correlated negatively with the gut passage time 
and pH, while proteolytic metabolites and breath methane showed a positive 
correlation. Finally, we identified associations between segmental transit 
time/pH and coffee-, diet-, host- and microbial-derived metabolites. Our work 
suggests that gut physiology and environment are key to understanding the 
individuality of the human gut microbial composition and metabolism.

Diet influences the gut microbial composition and metabolism1,2. How-
ever, even with identical dietary intake, the gut microbiome varies3,4, 
suggesting that other factors in the gut contribute to these variations. 
Gut transit time accounts for substantial variation in the microbiome 
composition of healthy populations5–8, with longer transit time asso-
ciated with increased microbial protein degradation and methane 
production9. While short-chain fatty acids (SCFAs), the main microbial 
products of saccharolysis, are typically considered beneficial10, micro-
bial proteolysis results in metabolites associated with poor health 

outcomes, including hydrogen sulfide, ammonia, branched-chain fatty 
acids (BCFAs), p-cresol, indole and phenylacetate11,12.

Changes in pH along the gut are also linked to gut microbial compo-
sition and metabolism13. The presence of SCFAs and other organic acids 
lowers colonic pH13, inhibiting bacteria sensitive to acidic environments14. 
Yet, little is known about how the gut environment, determined by physi-
ological factors such as transit time and luminal pH, associates with 
diet–host–microbiota metabolism. Understanding these factors could 
be crucial for future personalized dietary microbiome-based strategies.
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explained a significant proportion of variation for day-to-day fluctua-
tions in all of the gut environmental factors (Supplementary Table 3b), 
indicating that the stability of the gut environment is to some extent 
personal.

Next, we performed a permutational multivariate analysis 
of variance (PERMANOVA) on the QMPs, urine and faecal metabo-
lomes and found that the individual explained more than 50% of the 
inter-individual variations in all three cases (Fig. 1c). The sampling 
day explained on average 6.7% of the urine metabolome variation 
but did not explain day-to-day variations in the gut microbiome and 
faecal metabolome. (Fig. 1c). By inspecting the β-diversities of indi-
vidual microbiome and metabolome profiles, we observed that some 
individuals showed less variation over the study period than others 
(Extended Data Fig. 2).

Transit time can be assessed using wireless motility capsules 
(SmartPills), which measure intraluminal pH, temperature and pres-
sure along the gastrointestinal tract that allow for the determination 
of segmental transit times. SmartPills are one of the standard clinical 
methods for directly assessing transit time, along with radio-opaque 
markers and scintigraphy15, and have been used in previous microbi-
ome studies16,17.

In this Article, we conducted a 9 day observational study with 
61 healthy volunteers and assessed whole-gut and segmental transit 
time and pH by SmartPills. We also collected data on bowel habits, 
dietary intake, and breath hydrogen and methane levels and pro-
filed urine and faecal samples using multi-omics techniques. This 
allowed us to follow and link inter-individual and day-to-day changes 
in the gut environment, gut microbiota and microbiota-derived 
metabolites.

Results
Study design and participant characteristics
We enrolled 61 healthy participants (aged 39 ± 13.5 years, with body 
mass index (BMI) of 23.6 ± 2.8 kg m−2; Table 1 and Extended Data Fig. 1) 
and asked them to maintain their habitual lifestyle and diet for 9 con-
secutive days (Fig. 1a). The study included two visits (day 2 and day 9) 
where fasting blood glucose, insulin and C-peptide, as well as breath 
hydrogen and methane, were measured (Table 1). On the first visit, 
participants were given a breakfast that accounted for 25% of their 
daily energy needs (Supplementary Table 1) to provide a standard-
ized meal before a subset of the volunteers (n = 50) ingested a wire-
less motility capsule (SmartPill) to measure whole-gut and segmental 
transit time and pH18. While previous investigations used granola bars 
(SmartBar) before the monitoring19,20, we used a complex meal similar 
to a recent study21 to investigate diet–microbiota interactions. Post-
prandial breath and urine samples were obtained as indicated in Fig. 1a.  
The participants recorded daily 24 h dietary records (days 1–8) using 
the myfood24 nutrition platform (https://www.myfood24.org); noted 
daily bowel habits including defecation time, stool consistency assessed 
by the Bristol Stool Form Scale (BSS)22 and stool frequency (number of 
bowel movements per day); and collected daily urine (the first morn-
ing sample) and faecal samples (the first bowel movement). The study 
population had normal bowel habits (Table 1) with a median BSS of 
type 4 and 1 bowel movement per day. Transit time was also estimated  
by a self-administered sweet-corn transit time test23 on days 3 and 
5 (corn TT). We measured faecal water content (indication of stool 
moisture, a proxy marker of transit time23), pH and microbial load 
in all collected faecal samples (n = 484). All collected urine samples 
(daily spot and postprandial samples, n = 1,154) and a subset of faecal 
samples (n = 170) were profiled by untargeted liquid chromatogra-
phy–mass spectrometry (LC-MS)-metabolomics to obtain urine and 
faecal metabolomes. Finally, we obtained the gut microbiome com-
position via 16S ribosomal RNA (rRNA) gene sequencing of a subset 
of faecal samples (n = 362) and assessed both relative microbiome 
profiles (RMPs) and quantitative microbiome profiles (QMPs) after 
adjusting for microbial load24.

Gut environment stability varies for each individual
Daily sampling allowed us to evaluate the fluctuations in gut environ-
mental factors, faecal and urine metabolomes, gut microbiomes and 
diets within and between healthy adults over time (Supplementary 
Fig. 1). First, we observed varying degrees of day-to-day fluctuations 
within individuals for faecal pH (coefficient of intra-individual varia-
tion (CVIntra) 0.3–8.1%), BSS (0–57.8%), stool frequency (0–73.1%), stool 
moisture (2.2–24%) and microbial load (7.6–72.7%) (Fig. 1b and Supple-
mentary Table 2), suggesting that some individuals have more stable 
gut environments than others. Most of the gut environmental factors 
varied within individuals over the 9 days, whereas faecal pH remained 
relatively stable (Fig. 1b and Supplementary Table 3a). Participant ID 

Table 1 | Participants’ characteristics (N = 61)

Mean ± s.d./Median  
(25th–75th percentiles)

Range

Sex, male/female 18/43 -

Age (years) 39 ± 13.5 20–66

BMI (kg m−2) 23.6 ± 2.8 17.6–29.5

Fasting glucose (mmol l−1)a 5.1 (4.9–5.4) 4.4–6.9

Fasting insulin (mmol l−1)a 32.5 (24.2–51.7) 14.7–132.0

Fasting C-pep (pmol l−1)a 407 (321–520) 186–771

Dietary intakea

  Total energy intake (kcal d−1) 2256 ± 605 1,276–5,091

  Carbohydrate (g d−1) 231.4 ± 76.9 51–521

  Carbohydrate (E%) 41.1 ± 8.7 14.2–69.4

  Protein (g d−1) 86.1 ± 29.5 32–209

  Protein (E%) 15.5 ± 4.4 5.5–35.6

  Fat (g d−1) 99.0 ± 34.4 34–256

  Fat (E%) 39.4 ± 8.2 16.5–62.3

  Fibre (g d−1) 24.0 ± 10.3 3–62

 � Fibre intake (g per 
1,000 kcal d−1)

10.8 ± 3.9 2–23

Gut environmental factorsa

  Stool consistency, BSS 4 (3–5) 1–7

  Stool frequency (n per day) 1 (1–2) 0–5

  Stool moisture (%) 73 (69–77) 28–93

  Faecal pH 6.8 (6.3–7.0) 5.4–7.3

Faecal SCFAs (µmol per g of faeces)a

  Acetate 16.11 (8.29–26.06) 0.85–76.07

  Propionate 2.49 (1.56–3.93) 0.01–33.80

  Butyrate 1.43 (0.78–2.09) 0.04–5.96

  Valerate 1.20 (0.89–1.69) 0.33–4.10

  Caproate 0.54 (0.13–1.07) 0.01–6.88

Faecal BCFAs (µmol per g of faeces)a

  2-Methylbutyrate 0.54 (0.39–0.71) 0.07–3.24

  Isovalerate 0.41 (0.28–0.55) 0.08–2.23

  Isobutyrate 0.29 (0.22–0.37) 0.07–1.39

Breatha

  Fasting hydrogen (p.p.m.) 6.5 (4.0–12.0) 0.5–51

  Fasting methane (p.p.m.) 1.0 (0–18) 0–67.5

E%, energy per cent; p.p.m., parts per million. aMean of all records/measurements.

http://www.nature.com/naturemicrobiology
https://www.myfood24.org


Nature Microbiology | Volume 9 | December 2024 | 3210–3225 3212

Article https://doi.org/10.1038/s41564-024-01856-x

Stool moisture and pH explain daily gut microbiome 
fluctuations
To explore what drives the intra-individual fluctuation in the metabo-
lomes and the microbiome, we performed distance-based redundancy 
analysis (db-RDA). We considered daily dietary macronutrients and 
fibres, as well as the gut environmental factors. None of the dietary 

components explained intra-individual fluctuations in the gut micro-
biome or metabolomes. By contrast, stool moisture, faecal pH, BSS 
and time of defecation markedly affected the gut microbiome (QMP, 
genus level; Fig. 2a), explaining 3.5%, 2.5%, 2% and 1.3% of the varia-
tions, respectively. Similar results were observed using the RMP data 
(Extended Data Fig. 3a) and in previous studies6,25. Notably, these 
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Fig. 1 | PRIMA study design and variations in gut environmental factors, gut 
microbiome and metabolomes. a, PRIMA study design. The study included 
two site visits, at which fasting blood and breath samples were taken. At visit 
1, anthropometric measurements were attained, and all participants were 
given a standardized breakfast; a subset of 50 volunteers ingested SmartPills 
immediately after. Postprandial breath hydrogen and methane were measured 
every 30 min for 6 h, and postprandial urine was collected at 0.5 h and every hour 
until 24 h as indicated. On days 3 and 5, participants performed a sweet-corn 
test to measure WGTT. In addition, daily 24 h dietary records (days 1–8), records 
of bowel habits (stool consistency, stool frequency and time of defecation) 
and daily urine and faecal samples were obtained. Solid line indicates sample 

collection on site and dashed line sample collection at home. b, Inter- and intra-
individual variations in the gut environmental factors over the 9 consecutive 
days. The red and blue lines represent median and mean values, respectively. 
Grey lines represent intra-individual fluctuations over time. Asterisks indicate 
the statistical significance of mixed-effect models accounting for repeated 
measures (two-sided ***P < 0.001, **P < 0.01, *P < 0.05; NS, not significant;  
see Supplementary Table 3 for details; no adjustment for multiple testing was 
applied). c, Percentage of variation explained by individual and study day in the 
gut microbiome and urine and faecal metabolomes based on PERMANOVA tests 
(two-sided *P < 0.05).
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explanatory factors are proxies for gut transit time, suggesting that 
day-to-day variations in transit time are reflected in the gut microbi-
ome variation.

Stool moisture and faecal pH further explained 3.1% and 3%, 
respectively, of the intra-individual variation in urine metabolomes, 
despite subtle day-to-day fluctuations (Fig. 2b). This suggests that 
even small changes in the colonic water content and pH may be 
associated with the host–microbiota metabolism. However, these 
observations could also be influenced by daily diet variations. Gut 
environmental factors did not contribute to the intra-individual 
fluctuations in the faecal metabolomes (Extended Data Fig. 3b). It 
should be noted that faecal metabolome data were derived only from 
three consecutive days, and stool moisture still tended (P = 0.081) to  
have an effect.

Transit times and pH vary between individuals
SmartPills were used to obtain whole-gut transit time (WGTT), gastric 
emptying time (GET), small-bowel transit time (SBT), colonic transit 
time (CTT) and intestinal transit time (ITT; SBT + CTT), as well as pH 
throughout the gastrointestinal tract (GIT) (Extended Data Fig. 3c). In 
8 individuals, the capsule was retained in the stomach for over 8 h, a 
common event reported in other studies19,26. Therefore, GET and WGTT 
values from these participants were excluded from our analyses. In 
addition, we could not determine CTT and WGTT in one participant 
due to a signal loss.

The median values of transit time were as follows: GET, 4.8 h (range 
3.1–6.2 h); WGTT, 23.3 h (12.4–72.3 h); CTT, 13.6 h (2.1–63.5 h); and 
SBT, 5.1 h (2.5–10.3 h), in agreement with previously reported data on 
healthy populations27. For comparison, the corn TT showed a median of 
23.6 h (10.8–109.7 h) at day 3 and 19.7 h (12.0–84.5 h) at day 5. Further-
more, we found a strong correlation between the two corn TT meas-
urements (Spearman correlation coefficient (SCC) = 0.8, P < 0.001) 
suggesting consistency within individuals. The median of the mean 
corn TT across the two days was 21.7 h (11.7–97.1 h) (Fig. 2c), similar to 
the WGTT obtained by the SmartPill. However, we did not observe any 
correlation between the WGTT and corn TT (Extended Data Fig. 4a), 
indicating that despite providing similar results on average, individu-
ally, these two methods showed different results.

When exploring the relationships between segmental transit 
times, corn TT, gut environmental factors and participant character-
istics (Extended Data Fig. 4a), we found that the transit times recorded 
by both methods were negatively correlated to BSS, as also reported 
previously23,28. We also observed that women had significantly longer 
CTT compared with men, while there was no effect of menstruation 
status among the women (Extended Data Fig. 4b).

Large inter-individual variations in the gastrointestinal segmental 
pH were also observed (Fig. 2d) with the following median pH values 
in the upper GIT: the stomach (0.9, range 0.5–4.9), duodenum (6.1, 
5.0–7.2) and small intestine (7.4, 6.4–8.2). pH in the proximal colon 
was slightly acidic (6.3, 5.3–7.0) followed by a gradual increase in the 
distal colon (6.9, 5.0–8.2) and sigmoid colon (7.2, 5.6–8.6). Interestingly, 
a small decrease in pH was observed from the sigmoid colon to the 
rectum (7.0, 5.7–8.6) and also in the faecal pH (6.9, 6.6–7.3), indicating 
that acidifying processes occur after entry into the rectum.

CTT and pH contribute to gut microbiome variations
To quantify how participant characteristics, clinical variables, diet and 
gut environmental and physiological factors explain inter-individual 
variations in the gut microbiome and metabolomes, we performed a 
db-RDA using data derived from faecal and 24 h urine collections on 
day 2 from all participants (n = 61; Supplementary Table 4). Moreo-
ver, we performed the same analysis with whole-gut and segmental 
transit times and pH derived from the SmartPills on day 2 (n = 50). 
Stool moisture and distal colon pH were key factors associated with 
inter-individual variation in QMPs (Fig. 2e), accounting for 5.5% and 5% 
of the variation, respectively, on day 2 and also other days (Supplemen-
tary Table 4). Unlike previously reported data from larger cohorts5, BSS 
did not explain a significant proportion of the variation in QMP in this 
population. WGTT, CTT, corn TT and faecal pH explained 9.1%, 6.2%, 
4.9% and 5.4%, respectively, of the inter-individual variations in the 
24 h urine metabolome, in comparison to age, which explained 4.5% of 
the variation (Fig. 2f). These contributions were consistent when test-
ing against the urine metabolomes on different days (Supplementary 
Table 4). By contrast, segmental transit time did not contribute to the 
inter-individual variation in the faecal metabolomes, whereas pH in 
the distal colon and fibre intake showed the largest effects explaining 
6.8% and 5.9% of the variations, respectively; however, this was not 
significant after adjusting for multiple testing (Supplementary Table 4).

We also tested the effect of menstruation during the study period 
for women (non-menstruating, n = 30; menstruating, n = 13), which 
showed effect sizes of 3.7% (gut microbiome) and 3.6% (urine metab-
olome), however without statistical significance. Considering the 
notable effect size of age on urine metabolome and a significant age 
difference between the two groups of women (P = 0.01), age might con-
tribute to these observed effects. Our results emphasize that the per-
sonal gut environment contributes considerably to the inter-individual 
differences in the gut microbiota and urinary metabolic profiles.

Individual gut microbiota and metabolite profiles are 
dynamic
We next assessed intra-individual fluctuations in microbial-derived 
metabolites including breath hydrogen and methane, faecal SCFAs 
(acetate, propionate, butyrate, valerate and caproate) and BCFAs 
(isobutyrate, isovalerate and 2-methylbutyrate; Table 1), as well as 
16 other microbial-derived metabolites detected in faeces and urine, 
including the proteolytic markers, p-cresol sulfate (PCS), phenylacetyl-
glutamine (PAGln) and indoxyl sulfate. Substantial day-to-day fluctua-
tions were observed (Fig. 3a and Supplementary Fig. 2). Breath methane 
and hydrogen had a median CVIntra of 141% and 47%, respectively, with 
a moderate positive correlation between the two time points for both 
gases (hydrogen, SCC = 0.42, P < 0.001; methane, SCC = 0.66, P < 0.001). 
Faecal concentrations of the SCFAs and BCFAs fluctuated consider-
ably from day to day (median CVIntra ranging from 26% to 40%) with 
valerate varying the least and acetate the most. Similarly, the relative 
abundances of the proteolytic markers varied substantially from day to 
day with a median CVIntra of 26%, 42% and 39% for PAGln, indoxyl sulfate 
and PCS, respectively. These findings suggest that microbial-derived 
metabolites in breath, faeces and urine fluctuate from day to day on 
a habitual diet.

Fig. 2 | Intra- and inter-individual variations in gut microbiome and 
urine metabolome explained by gut environment. a,b, Contributions of 
dietary and gut environmental factors on intra-individual variations in gut 
microbiome (QMP, all days) (a) and urine metabolome (all days, all features) 
(b). c, Boxplots showing segmental and WGTT measured by the SmartPill 
(n = 50) at day 2 and mean transit time of sweet corn (n = 61, day 3 and day 5) 
with each dot representing an individual. d, Boxplots showing pH throughout 
the gastrointestinal tract measured by the SmartPill (n = 50) and in faeces 
measured by pH meter at day 2 (n = 61) with each dot representing an individual. 
e,f, Contributions of clinical variables, dietary components, gut environmental 

and physiological factors and participant characteristics to inter-individual 
variations in the gut microbiome (QMP, sample closest to the capsule body exit) 
(e) and urine metabolome (24 h, day 2, all features) (f). Panels a, b, e and f were 
quantified by db-RDA with permutation tests using Bray–Curtis distances. Effect 
sizes are plotted. The asterisks indicate statistical significance after adjustments 
for multiple testing (*q < 0.1). See Extended Data Fig. 3a,b for RMPs and faecal 
metabolome. Boxplot centre in c and d represents median, and box represents 
interquartile range (IQR). Whiskers extend to most extreme data point <1.5 IQR. 
SB, small bowel; CH4, breath methane; H2, breath hydrogen.
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Next, we used repeated measures (Fig. 3b, Extended Data Fig. 5 and 
Supplementary Table 5) and Spearman correlation analysis (Fig. 3c) 
to find links between specific microbial metabolites and the gut envi-
ronment along with diet. Faecal SCFAs were negatively correlated to 
faecal pH with butyrate showing the strongest correlation (r = −0.77, 
q < 0.001) in line with previous human studies29. Moreover, higher fae-
cal propionate (SCC = −0.25, q < 0.1) was linked to shorter CTT with a 
similar tendency observed for faecal butyrate (SCC = −0.29, P < 0.05, 

q = 0.3). Faecal butyrate also tended to negatively correlate with rectal 
pH (SCC = −0.37, P < 0.05, q = 0.2) but not with pH in other segments of 
the colon, suggesting that butyrate production may contribute to the 
reduced pH observed in the rectum and faeces.

Proteolytic markers including urinary PAGln and faecal BCFAs were 
negatively correlated to stool moisture, and urinary PCS correlated 
positively with faecal pH (PAGln, r = −0.12, q < 0.1; isobutyrate, r = −0.39, 
q < 0.05; isovalerate, r = −0.37, q < 0.1; 2-methylbutyrate, r = −0.43, 
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Fig. 3 | Fluctuations in microbial metabolites and their correlations to gut 
physiology and environment. a, Intra-individual fluctuations in microbial 
metabolites measured in breath, faeces and urine. Boxplots show coefficients 
of intra-individual variations. Each dot represents an individual (n = 61). Boxplot 
centre represents median, and box represents IQR. Whiskers extend to most 
extreme data point <1.5 IQR. b,c, Correlations between microbial metabolites 
and gut physiology and environmental factors as assessed by repeated measures 
correlation coefficient (b) or the Spearman correlation coefficient (c).  

The asterisks indicate statistical significance after adjustment for multiple 
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q < 0.05; PCS, r = 0.12, q < 0.1). Similarly, higher urinary levels of PCS 
were associated with longer CTT and ITT (SCC = 0.48, SCC = 0.44, 
respectively, q < 0.05), with similar tendencies observed for PAGln 
and indole-lactic acid. Furthermore, breath methane was linked to 
lower stool moisture and longer CTT. It is worth noting that none of 
this was shown for SBT, indicating that CTT determines the abundance 
of these metabolites and supports the hypothesis that longer passage 
through the colon is linked to microbial proteolysis possibly due to 
the depletion of substrates for saccharolytic fermentation9,30. Urinary 
indoxyl-glucuronide was positively associated with pH in the distal 
colon (SCC = 0.33, q < 0.1), and a similar trend was found between 
urinary PCS and rectal pH (SCC = 0.32, P < 0.05). These metabolites 
did not correlate to pH in the small intestine and the proximal colon, 
indicating a higher contribution of microbial proteolysis to pH in 
the distal gut compared with the proximal gut. In summary, CTT and 
colonic pH, but not SBT and small-intestinal pH, are associated with 
levels of several microbial metabolites in breath, faeces and urine. In 
addition, we found several associations between microbial metabolites 
and dietary components (Supplementary Table 5) with notable inverse 
correlations between the intake of dietary fibres and faecal BCFAs, 
urinary PCS and urinary PAGln, respectively.

Faecal and urine metabolomes are linked to transit time  
and pH
To explore unknown metabolic features related to gut physiology, we 
used untargeted metabolomics to profile the urine and faecal metabo-
lomes. We applied univariate and multivariate statistical models on all 
molecular features identified in urine and faeces. We first used sparse 
partial least squares (SPLS) models on the SmartPill-derived data and 
urine metabolomes from 24 h postprandial urine collected on day 2 
and faecal metabolomes collected closest to the SmartPill egestion. 
We then performed linear regression models on the same data and 
further investigated features selected by both models (446 unique 
features; Supplementary Table 6).

Several metabolic features in urine and faeces were associated 
with whole-gut and segmental transit time and pH (Fig. 4a,b). To inves-
tigate these features in further detail, the corresponding samples were 
analysed by tandem mass spectrometry (MS2) and by matching with 
authentic standards when available, resulting in the identification of 
33 metabolites (Supplementary Tables 7 and 8).

Apart from urinary levels of PCS and PAGln, several other urinary 
metabolites derived from the breakdown of aromatic amino acids tryp-
tophan and tyrosine by gut microbes were found to be linked with gut 
transit time and faecal pH. Specifically, 5-hydroxy-2-oxindole sulfate, 
3-hydroxy-2-oxindole sulfate and 4-hydroxybenzoic acid sulfate were 
associated with longer WGTT/CTT, while 3-hydroxy-2-oxindole glucu-
ronide correlated with higher faecal pH. By contrast, faecal tryptophan 
was negatively linked to faecal pH. In addition, higher faecal proline 
and urinary picolinoylglycine levels were linked with increased faecal 
and rectal pH, respectively.

Several dicarboxylic acids in faeces, pimelic, suberic and sebacic 
acids were positively associated with WGTT and CTT. By contrast, faecal 
glutaric acid and pipecolic acid were negatively correlated with WGTT/
CTT and sigmoid, rectal and faecal pH. Pipecolic acid is highly abundant 
in plants; however, it can also be produced by the gut microbiota from 
lysine31. Furthermore, higher urinary levels of citric acid were positively 
associated with pH in the proximal colon.

Moreover, faecal levels of 2-oxindole-3-acetic acid, previously 
linked to the New Nordic Diet and Mediterranean diet32,33, were nega-
tively associated with WGTT, CTT and faecal pH. Similarly, faecal pan-
tothenic and nicotinic acids were negatively associated with CTT and 
faecal pH, respectively. In addition, dihydroferulic acid glucuronide 
and argininic acid in urine were negatively associated with rectal pH, 
while p-hydroxyphenyllactic acid in faeces was negatively linked to 
faecal pH.

4-Hydroxyhippuric acid and several urinary markers of coffee 
intake, including 1-methyluric acid, 1-methylxanthine, 1,3-dimethyluric 
acid, 1,7-dimethyluric acid and 1,3,9-trimethyluric acid, were neg-
atively associated with small-intestinal pH. 1-Methylxanthine and 
1,3,9-trimethyluric acid in faeces were also negatively associated with 
WGTT or faecal pH, suggesting a link between coffee consumption 
and gut function. In addition, a positive correlation was observed 
between rectal pH and urinary 4-methylcatechol sulfate, a metabolite 
of quercetin found in plant-based foods34. Urinary taurine and faecal 
cholic acid were also positively associated with small-intestinal pH, 
supporting the role of bile acids in neutralizing the acidic chyme com-
ing from the stomach35.

Finally, urinary pseudouridine, a primary constituent of RNA, 
was found to be inversely associated with CTT and sigmoid colon 
pH, in line with our previous work9. Pseudouridine was also found in 
faeces and showed a similar inverse relationship with faecal pH, as did 
deoxy-xanthosine and xanthine. This suggests a link between increased 
cell turnover and lower colonic pH.

Altogether, by using untargeted LC-MS metabolomics, we identi-
fied several host-, microbial- and food-derived metabolites associated 
with WGTT, CTT and pH in the distal part of the colon emphasizing 
an interplay between diet, the gut environment, the host and the 
microbiota.

Microbial alpha diversity is linked to long passage
To explore potential links between the identified metabolites and 
the gut microbiota, Spearman correlation analysis was performed 
(Fig. 5). Strong positive correlations between microbial alpha diversity 
measures and microbial proteolysis, CTT and ITT were found. On the 
contrary, alpha diversity correlated negatively with stool moisture and 
microbial saccharolysis.

Products of microbial proteolysis and dicarboxylic acids were posi-
tively correlated with the absolute abundances of several bacterial gen-
era including Intestimonas, Flavonifractor, Eubacterium, Lachnospira,  
Clostridium, Oscillibacter, Alistipes, Dialister and Akkermansia. The 
same genera negatively correlated with faecal levels of tryptophan, 
oxindole-3-acetic acid and various coffee-derived metabolites. Not 
surprisingly, these genera were also positively associated with longer 
ITT and CTT and higher faecal pH, and negatively associated with 
stool moisture and/or BSS. Conversely, SCFAs-producing genera 
including Agathobacter, Faecalibacterium and Blautia36,37, along with 
lactate-producing Streptococcus, were all positively associated with 
faecal nicotinic acid, pantothenic acid and the coffee-derived metabo-
lites. Notably, Oscillibacter, Alistipes and Akkermansia have repeatedly 
been found elevated in samples linked to longer transit time and/
or constipation8,9,28, whereas butyrate-producing genera including 
Faecalibacterium and Agathobacter have been associated with shorter 
transit time28,38. In summary, these observations highlight the inter-
dependency between gut bacteria, metabolites and gut physiology.

Discussion
Gut transit time and pH are important determinants of gut microbiota 
composition and metabolism7. Here we showed substantial variation 
in whole-gut and segmental transit time, along with luminal pH among 
healthy individuals. These variations explained differences in micro-
biome composition and host–microbiota co-metabolism. As pH and 
transit time influence microbial growth and enzyme activities39, these 
factors could play a key role in shaping the gut microbial composition 
and metabolism along the GIT as well as microbiome responses to 
foods. A recent study confirmed that microbiome and metabolome 
compositions differ along the GIT40. Future studies with sampling along 
the GIT combined with measurements of regional pH and transit time 
are needed to ultimately disentangle this. Our study emphasizes that 
person-specific differences in the luminal pH may pose challenges for 
studies using pH-sensitive ingestible devices40,41. It is worth noting that 
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Fig. 5 | Associations between metabolites, bacterial genera and gut 
environmental factors. Hydrogen and methane were measured in breath, and 
SCFAs and BCFAs were measured in faeces; other metabolites as indicated in 
brackets. (b), breath; (f), faecal metabolite; (u), urine metabolite. The colour 

gradient shows the Spearman correlation coefficient, and the asterisks indicate 
statistical significance after adjustment for multiple testing (***q < 0.001, 
**q < 0.01, *q < 0.05).
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repeated measurements in human studies are needed as we observed 
substantial daily fluctuations in microbial-derived metabolites.

We identified several metabolites associated with longer transit 
time that have been reported to be elevated in patient groups with 
constipation42–44. Among these, dicarboxylic acids including pimelic 
acid were associated with longer ITT and/or higher pH, and bacteria 
consistently associated with constipation8,9,28. Pimelic acid, possibly 
originating from microbial fatty acid metabolism45,46, has been found 
at higher faecal levels in patients with chronic kidney disease47 and 
colorectal cancer48, often associated with constipation49,50. A recent 
study showed an increased abundance of dicarboxylic acids towards 
the distal gut40, and the authors speculated that it could be due to 
the catabolism of host epithelial cells. Whether longer ITT might be 
associated with increased epithelial cell turnover and shedding needs 
further research.

A negative association between daily fibre intake and several pro-
teolytic markers was also observed. As dietary fibres can regulate 
microbial tryptophan metabolism51, availability of fibre in the colon 
may affect microbial protein fermentation associated with negative 
health outcomes11,12. Further research is needed to understand these 
mechanisms and to explore the relationship between gut physiology 
and microbiome under controlled diets, possibly involving dietitians 
or providing whole diets.

Despite its limited cohort size, our study shows significant associa-
tions between intestinal segmental transit time and pH with intra- and 
inter-individual differences in the gut microbiome composition and 
metabolism in a healthy population. Potential limitations to consider 
are the choice of breakfast made before the SmartPill measurement; 
given that past validation studies and their normative data rely on 
specific meal/nutrient combinations52,53, any deviations from these 
could likely influence gut motility and transit time. Furthermore, the 
sweet-corn test is not a validated tool to assess WGTT despite being 
cost effective. Finally, the introduction of corn and the meals during the 
first visit constitute small dietary changes, but they could possibly have 
impacted gut physiology. While this study included a rather homog-
enous group of healthy volunteers, it provides valuable insights into 
longitudinal variations in gut microbial metabolism and pH over more 
than 1 week. Our results highlight the important role of transit time and 
pH for the gut microbiome composition and levels of microbial-derived 
metabolites, emphasizing the importance of considering gut physiol-
ogy and environment in human microbiome studies. This may be key 
for understanding the healthy gut microbiome and for disentangling 
personal microbiome responses to foods and other lifestyle factors.

Methods
Study participants
A 9 day human observational trial (PRIMA, toward Personalized dietary 
Recommendations based on the Interaction between diet, Microbiome 
and Abiotic conditions in the gut) among healthy participants was 
conducted at the Department of Nutrition, Exercise and Sports at the 
University of Copenhagen in Denmark from April to December 2021. 
The research protocol was approved by the Municipal Ethical Commit-
tee of the Capital Region of Denmark (H-20074067), and all participants 
provided written informed consent to participate according to Case 
Report (CARE) guidelines and in compliance with the principles of the 
Declaration of Helsinki. The study was registered at ClinicalTrails.gov 
(ID NCT04804319).

Out of the initially anticipated 85 individuals, 63 healthy partici-
pants living in Denmark were enrolled, and 61 completed the study 
(43 women and 18 men; Extended Data Fig. 1). The two drop-outs were 
excluded due to illness and antibiotic administration. Among the 61 
study participants, a subset of 50 volunteers (37 women and 13 men) 
underwent wireless motility capsule monitoring at visit 1 as anticipated. 
Volunteers were compensated with gift cards (500 or 800 DKK) but 
received no direct financial compensation. The criteria for inclusion 

in the study specified for participants who were healthy by self-report 
(did not suffer from inflammatory bowel syndrome, small-intestinal 
overgrowth, inflammatory bowel disease, chronic or infectious disease, 
diabetes or cancer), ages 18–75 years old with a BMI between 18.5 and 
29.9 kg m−2, with no intake of medication, except for mild antidepres-
sants and contraceptive pills. Intake of antibiotics, diarrhoea inhibitors 
and laxatives 1 month before the trial was not allowed. Furthermore, 
pregnant or lactating women were not included in the trial.

The PRIMA study was an explorative study. The primary outcome 
was to investigate associations between faecal pH and gut microbial 
saccharolytic/proteolytic metabolism (assessed by targeted and untar-
geted metabolomics). The secondary outcomes included to explore 
relationships between the gut environmental factors (small-intestinal 
and colonic pH and transit time assessed by wireless motility capsules 
and various transit time proxy markers measured in faeces) and gut 
microbiome and metabolome assessed by 16S rRNA sequencing and 
metabolomics.

Experimental design and sample collection
Seven days before the study, the participants were asked not to con-
sume any sweet corn as two self-administered sweet-corn tests to evalu-
ate the WGTT were part of the study. Before both visits, the participants 
were asked to abstain from alcohol intake, smoking and strenuous 
exercise.

The participants were asked to maintain their habitual diet and 
register their food intake online via the Myfood24 tool (myfood24.org) 
with nutritional values based on the Danish food composition database 
FRIDA version 4.1 (frida.fooddata.dk) for eight consecutive days during 
the study. During the trial, the participants collected daily stool sam-
ples (first bowel movement whenever possible), stored the samples in 
their domestic freezers and transported them to the laboratory while 
being kept cold. Moreover, the participants self-reported daily their 
defecation patterns including time of defecations, stool consistency 
assessed by the BSS and stool frequency, intake of dietary supplements 
and medication (limited to pain killers for a few participants), and 
their gastrointestinal symptoms. The gastrointestinal symptoms were 
assessed based on a 10 cm visual analogue scale (0, no symptoms; 10, 
the most severe symptoms) in regard to stomach ache, bloating, con-
stipation, diarrhoea and overall comfort. Women were asked to note 
down whether they had menstruation during the study period (yes/
no). Furthermore, the participants collected seven daily spot morning 
urine samples (days 1, 2, 4, 5, 6, 7, 8; the first morning sample) and two 
24 h urine samples (days 2–3 and days 8–9) during the study period. 
The collected urine samples were stored in the participants’ domestic 
freezers, transported to the study site in a cooling bag and stored at 
−20 °C overnight. After thawing at 5 °C, aliquots of 1 ml were taken 
and stored at −80 °C until further use. In addition, the participants 
consumed 100 g of sweet corn before their evening meal on days 3 and 
5 and recorded the time of the corn egestion23.

At both visits (days 2 and 9), fasting blood and breath samples 
were collected. During the first visit, anthropometric measurements 
(height, body weight and BMI) were obtained. Furthermore, the first 
visit also included a standardized meal test for all participants (n = 61). 
The test meal consisted of rye bread (with butter and jam), a boiled 
egg, a portion of natural yoghurt along with nuts, walnuts, blueberries 
and a glass of water (100 ml) with 250 mg of dissolved paracetamol 
(Table S1), which was used as a marker of postprandial gastric empty-
ing of liquids54. The meal portion size was calculated as 25% of the daily 
energy demand of each participant based on the Harris–Benedict equa-
tion22. Postprandial urine samples (at 30 min, 60 min, 120 min, 180 min, 
240 min, 300 min and 360 min and between 6 and 8 h, between 8 and 
10 h and between 10 and 24 h) and postprandial breath exhalations (at 
30 min, 60 min, 90 min, 120 min, 150 min, 180 min, 210 min, 240 min, 
270 min, 300 min, 330 min and 360 min) were collected. A subset of 
participants (n = 50) ingested a SmartPill capsule immediately after 
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the meal with a bit of additional water if needed. All participants drank 
150 ml of water at 2 h and 4 h after the meal, respectively. At 6 h, all par-
ticipants received a sandwich and 500 ml of water and left the study site.

SmartPill data collection and analysis
The SmartPill capsule is a single-use wireless gastrointestinal capsule 
(26.8 mm × 13 mm) that transmits data on luminal pH, temperature and 
pressure to a portable receiver, which was worn by the participants from 
ingestion to egestion and thereafter returned to the study personnel. The 
capsule measures a pH range of 1–9, with an accuracy of ±0.5 pH units, 
pressure at a range of 0–350 mmHg (±5 mmHg) and temperature ranging 
between 20 °C and 40 °C (±1 °C)23. Upon receiving the portable receiver, 
the study personnel downloaded the raw data from the receiver to the 
manufacturer’s software via a docking station (Motility GI v 3.1). Intestinal 
segmental transit times were determined based on landmark changes in 
the pH values as follows: gastric emptying was defined as the time point 
with an abrupt increase of ≥3 pH units indicating passage from the stom-
ach into the duodenum. The passage from the small intestine into the 
ileocaecal junction was defined as the first time point with a decrease of 
at least one pH unit. The body exit of the capsule was defined as the time 
point with a decrease in temperature and/or a loss of data. The time of 
capsule residence in each of the gastrointestinal segments corresponds 
to GET, small-intestinal transit time, CTT and combined WGTT. Regional 
pH and pressure profiles were also obtained, and the median values were 
determined. The segmental transit time and pH values in the colon were 
further segmented into proximal, distal and recto-sigmoid, respectively. 
The proximal colon pH and transit time were estimated as median values 
of the first 32.3% of the total CTT, the distal colon pH were median values 
of the next 32.6% and the recto-sigmoid pH were median values of the 
last 35.4%; this was based on previously reported data, which determined 
the percentages of total CTT according to the location of radio-opaque 
markers (visualized by X-rays) in the different segments of the colon16. 
In addition, the median pH value measured during the last 10 min before 
the capsule egestion was registered as rectal pH.

Dietary records
Detailed 24 h weighted food intakes were recorded for 8 consecutive 
days by the participants via the online Myfood24 tool (myfood24.org) 
with nutritional values based on the Danish food composition database 
FRIDA version 4.1 (frida.fooddata.dk). The collected data included 
information about the intake of macronutrients (carbohydrate, pro-
tein, fat) and dietary fibre (AOACFIB), in addition to information about 
more than 80 nutrients. Under-reporting was identified by calculat-
ing the reported caloric intake divided by the average daily energy 
demand for each person with a cut-off value of 0.8 (ref. 55). Accordingly, 
approximately 25% of the daily dietary records were under-reported, 
and the data were removed in the subsequent analyses in this study 
(this essentially affected 10 participants who under-reported more 
than 4 out of the 8 days, while the other participants occasionally 
under-reported daily intakes). By contrast, no over-reporters (cut-off 
>2.5) were detected. The total dietary profiles (all macro- and micronu-
trients available in Myfood24) were used in the principal component 
analysis, whereas macronutrient and fibre intake were used in the 
redundancy analyses. The daily intake was used for intra-individual 
analysis, whereas mean intake across the 8 days was used for the 
inter-individual analysis.

Breath exhalations measurements
Fasting and postprandial levels of hydrogen and methane were meas-
ured in all breath samples by the M.E.C. Lactotest 202 Xtend device 
(M.E.C. R&D sprl).

Biochemical analysis of blood
Blood samples were immediately put on ice upon collection until they 
were centrifuged for precipitation of blood cells and stored at −80 °C. 

Glucose was measured in plasma samples by using Pentra ABX 400 
(HORIBA ABX) with a detection limit of 0.11 mmol l−1. Serum insulin and 
C-peptide levels were measured by using Immulite 2000 XPi (Siemens 
Healthcare Diagnostics) with the detection limit of 14.4 pmol l−1 and  
27 pmol l−1, respectively. Before the analyses, both instruments’ perfor-
mances were validated using external and internal insulin, c-peptide 
and glucose controls. Three participants arrived for the second visit 
in a postprandial state; the blood was collected and analysed accord-
ingly, but the glucose, insulin and c-peptide values were not included 
in the data analysis.

Faecal measurements
Upon receipt, faecal samples were stored at −20 °C overnight, thawed 
and homogenized in sterile water with a sample-to-water ratio of 1:1 
(w/v) (faecal slurry). Subsequently, pH was measured in the faecal slurry 
using a digital pH meter (Mettler Toledo). The homogenized samples 
were subsequently aliquoted to cryotubes and stored at −80 °C until 
further analyses. Stool moisture was determined by evaporating the 
water of one aliquot (approximately 1 ml) using a vacuum concentra-
tor (Speed-Vac, Christ RVC 2-25) and by calculating the faecal weight 
difference before and after evaporation.

Faecal SCFAs and BCFAs were quantified by LC-MS in samples 
collected between day 2 and day 5 (n = 170) as previously described32. 
In brief, the samples were thawed, mixed with ethanol and purified by 
filtration (0.2 µm filter). Subsequently, the samples were derivatized 
with 3-nitrophenylhydrazine, and labelled internal SCFA standards 
were added. Dilution series of external SCFA standards were spiked 
with internal SCFA standards, and all derivatized samples were analysed 
on ultra-performance liquid chromatography (UPLC)-quadrupole 
time-of-flight mass spectrometry (QTOF-MS) (Synapt G2, Waters) in 
negative ionization mode (cone voltage 3.0 kV) with an ACQUITY BEH 
C18 guard column (2.1 × 5 mm, 1.7 µm, Waters) coupled to an ACQUITY 
BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters) and with collision 
energy of 6.0 eV. The faecal concentrations of SCFAs and BCFAs were 
determined using vendor software (Quanlynx, Waters).

Bacterial load in faeces was determined using approximately 
500 µl of frozen faecal slurry (238–816 mg) and diluting it 400,000 
times in physiological saline (8.5 g l−1 NaCl; VWR International). Next, 
1 ml of the microbial cell suspension obtained was stained with 1 μl SYBR 
Green I (1:100 dilution in dimethylsulfoxide; shaded during 20 min 
incubation at 37 °C; 10,000 concentrate, Thermo Fisher Scientific). The 
flow cytometry analysis of the bacterial cells present in the suspension 
was performed using a Cytoflex flow cytometer (CytoFLEX 3; Beckman) 
as previously described (Supplementary Fig. 3)24. The final microbial 
load was calculated per gram of faeces.

Microbiome profiling
DNA was extracted in random order from the faecal slurries 
(n = 484) using DNeasy PowerLyzer PowerSoil kit (Qiagen, 12855-
100), and the V3 region of the 16S rRNA gene was PCR amplified 
using 0.2 µl Phusion High-Fidelity DNA polymerase (ThermoFisher 
Scientific, F-553L), 4 µl high-fidelity buffer, 0.4 µl dNTP (10 mM 
of each base), 1 µM forward primer (primer binding upstream); 
5 ′ -A- a d a p te r -TC AG - ba rco d e - CC TACG G GAG G C AG C AG - 3 ′ ) ,  
1 µM reverse primer (primer binding reverse); 5′-trP1-adapter- 
ATTACCGCGGCTGCTGG-3′) and 0.05–5 ng faecal DNA in 20 µl total 
reaction volume. Both primers (TAG Copenhagen A/S) were linked to 
sequencing adaptors, and the forward primer additionally contained 
a unique 10 bp barcode (Ion Xpress Barcode Adapters) for each sam-
ple. The PCR program consisted of an initial denaturation for 30 s at 
98 °C, followed by 24 cycles of 98 °C for 15 s and 72 °C for 30 s and a 
final extension at 72 °C for 5 min. The PCR products were purified by 
the HighPrep PCR clean-up system (AC-60500 Magbio) according 
to the manufacturer’s protocol. The resulting DNA concentrations 
were determined by Qubit HS assay and libraries constructed with 
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mixing equimolar amounts of each PCR product. Partial 16S rRNA 
gene sequencing was performed on an Ion S5 System (ThermoFisher 
Scientific) using OneTouch 2 Ion5: 520/530 kit-OT2 400 bp and an Ion 
520 Chip. The raw data were pre-processed into an amplicon sequence 
variant (ASV) table using our in-house pipeline56 based on the DADA2 
algorithm and settings recommended for IonTorrent reads57, with 
taxonomy assigned to the ASVs using the Ribosomal Database Project 
(RDP, v18). The resulting ASV table, taxonomy and ASV sequences were 
merged into a phyloseq object for further analysis. For quantitative 
microbiome profiling analyses, the relative abundances derived from 
the pre-processed 16S rRNA sequencing analysis were adjusted for the 
bacterial loads as previously published58. In brief, samples with <10,000 
reads were removed (n = 362) and downsized to even sampling depth, 
defined as the ratio between sample size (16S rRNA gene copy number 
corrected sequencing depth) and bacterial load. 16S rRNA gene copy 
numbers were retrieved from the rRNA operon copy number database 
rrnDB73 (ref. 59). The copy-number-corrected sequencing depth of 
each sample was rarefied to the level necessary to equate the minimum 
observed sampling depth in the cohort while assuring a minimum 
number of 10,000 reads in each sample and optimizing the chosen 
sampling depth to exclude as few samples as possible. In case of no 
copy number correction, an average copy number of 3.88 was used6.

Metabolic profiling
Preparation of urine and faecal samples. Untargeted urine and faecal 
metabolomics were performed as previously published32. All urine sam-
ples were thawed on ice, centrifuged at 10,000 g at 4 °C for 2 min and 
transferred to a new tube to remove solid particles. The urine samples 
were kept cold on ice during preparation. Samples were randomized 
and pipetted into 15 plates (96-well). All urine samples from the same 
individual were placed on the same 96-well plate. Subsequently, they 
were diluted to 1:5 with an internal standard mixture (l-adenine-8-13C 
(Cambridge Isotope Lab), l-phenyl-d5-alanine-2,3,3-d3 (Cambridge 
Isotope Lab), caffeic acid 13C3 (Toronto Research Chemicals), caffeine 
13C3 (Toronto Research Chemicals), l-tyrosine 13C9 (Sigma Aldrich), 
para-aminobenzoic acid (Sigma Aldrich), l-tryptophan-(indole-d5) 
(Sigma Aldrich), hippuric acid-[13C6] (IsoSciences), cortisone-d8 (Sigma 
Aldrich) and glycocholic acid-[2H4] (IsoSciences)). Quality control (QC) 
samples were obtained by mixing 20 µl of each urine sample in each 
plate (plate pools) and by mixing 20 µl of each plate pool to create the 
global pool. The QC samples, blank assays (0.1% formic acid) and mix-
tures of known standards (including 33 microbial-derived compounds) 
were included in each plate. The plates were sealed and stored at 4 °C 
until analysis (24 h maximum, otherwise stored at −80 °C). If the plate 
was frozen and thawed again before analysis, the plate was gently mixed 
by vortex stirring for 30 min immediately before analysis.

Faecal homogenates collected between day 2 and day 5 (n = 170) 
were thawed at room temperature for 30 min and vortexed. Approxi-
mately 50 ±5 mg (≈50 µl) of the homogenates were mixed with 96% 
ethanol and internal standard mixture (l-adenine-8-13C (Cambridge 
Isotope Lab), l-phenyl-d5-alanine-2,3,3-d3 (Cambridge Isotope Lab), 
caffeic acid 13C3 (Toronto Research Chemicals), caffeine 13C3 (Toronto 
Research Chemicals), l-tyrosine 13C9 (Sigma Aldrich), lysophosphati-
dylcholine (17:1d7) (Avanti Polar Lipids), l-tryptophan-(indole-d5) 
(Sigma Aldrich), hippuric acid-[13C6] (IsoSciences), cortisone-d8 (Sigma 
Aldrich) and glycocholic acid-[2H4] (IsoSciences)) resulting in a 1:60 
dilution. The diluted samples were vortexed for 30 s and subsequently 
mixed at 60 °C for 2 min in a Thermo mixer at 1,400 r.p.m., before being 
centrifuged at 20,000 g (Eppendorf centrifuge 5417R) at 4 °C for 2 min. 
The supernatants were filtered through a 0.2 µm filter, and 200 µl of 
each faecal suspension was transferred to a 96-well plate, evaporated 
using a cooled vacuum centrifuge and re-dissolved in 200 µl 0.1% 
formic acid before the UPLC-MS. All faecal samples from the same 
individual were placed on the same 96-well plate, and QC samples 
were prepared in the same way as for the urine samples. In addition, 

each 96-well plate contained blank assays (96% ethanol) and mixtures 
of known standards (including 33 microbial-derived compounds).

UPLC-electrospray ionization-QTOF-MS analysis
Both urine and faecal samples were profiled by UPLC coupled with a 
QTOF mass spectrometer equipped with electrospray ionization (Syn-
apt G2, Waters) in both positive and negative ionization modes32. Blank 
samples (0.1% formic acid), assay blanks, standard mixtures and QC 
samples were injected regularly to evaluate LC-MS system stability, pos-
sible contamination and/or loss of metabolites. The injected samples 
(5 µl) were separated on a reversed-phase column (ACQUITY HSS T3 C18 
column, 2.1 × 100 mm, 1.8 µm) coupled with a pre-column (ACQUITY 
VanGuard HSS T3 C18 column, 2.1 × 5 mm, 1.8 µm). The mobile phases 
consisted of 0.1% formic acid in water (solvent A) and 0.1% formic acid in 
70:30 acetonitrile/methanol (solvent B). The duration of the analytical 
run was 7 min with the following flow rate: start condition (0.5 ml min−1), 
1 min (0.5 ml min−1), 2 min (0.6 ml min−1), 3 min (0.7 ml min−1), 4 min 
(0.8 ml min−1), 4.5 min (1.0 ml min−1), 6.4 min (1.1 ml min−1), 6.6 min 
(1.0 ml min−1), 6.8 min (0.5 ml min−1), 7.0 min (0.5 ml min−1), and the 
following gradient: start condition (5% B), 1 min (8% B), 2 min (15% 
B), 3 min (40% B), 4 min (70% B), 4.5 min (100% B), 6.6 min (5% B) and 
7 min (5% B). Mass spectrometry data were acquired in full scan mode 
with a scan range of 50–1,000 mass/charge (m/z). Data-dependent 
acquisition was performed on the top three most abundant ions on 
QC samples (only urine) to provide MS2 data. Electrospray settings 
were the following: the cone voltage was 2.5 kV and 3.2 kV; the colli-
sion energy was 6.0 and 4.0 eV; and the temperature of the ion source 
and desolvation nitrogen gas temperature were 120 °C and 400 °C for 
positive and negative ionization mode, respectively.

Metabolomics data processing
The raw data obtained by UPLC-MS were converted to mzML format by 
publicly available msConvert (ProteoWizard Toolkit)60. The converted 
data were pre-processed using the open-source R package XCMS (v3.18) 
using the centWave algorithm (requiring three consecutive scans with 
an intensity of over ten counts)61. The pre-processing steps included 
noise filtering, peak picking, retention time alignment and feature 
grouping across samples, and filling of missing features, which were 
done separately for the urine and faecal samples (and for positive and 
negative mode), respectively. The detailed pre-processing param-
eter settings can be found in Supplementary Table 9. Noise filtering 
settings included that features should be detected in a minimum of 
10% of all samples. Features with a retention time below 0.5 min or 
above 6.8 min were excluded. Data tables were generated comprising 
mass-to-charge ratio (m/z), retention time (rt) and intensity (peak area) 
for each variable in every sample. Each detected peak is represented by 
a feature defined by a rt and a m/z. The obtained data were corrected for 
within- and between-batch intensity drift using the locally estimated 
scatterplot smoothing correction method62. The processed data were 
normalized by the probabilistic quotient normalization63 method to 
correct for variations in urine and faecal concentrations within and 
between batches. Upon analyses of 15 plates with urine samples, QC 
samples clustered closely together in the principal component analy-
sis score plots, confirming a stable UPLC system during the course of 
analysis with the exception of two plates in the negative mode and 
one plate in the positive mode, which had to be removed from further 
statistical analyses (Supplementary Fig. 4).

Moreover, features with high variability after normalization 
across the pooled QC samples were filtered out (coefficient of vari-
ation, CV% >50%). Finally, the CAMERA package64 (v1.52) was used to 
group features together based on retention time (tolerance = 0.1 s) 
and to annotate possible adducts and isotopes. Upon pre-processing, 
641 and 651 molecular features were detected in the urine in posi-
tive and negative modes, respectively, whereas 453 and 445 molecu-
lar features were detected in faeces in positive and negative modes, 
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respectively. MzMine 3 (ref. 65) and MassLynx (Waters) were used for 
data visualization.

Metabolite identification and structure elucidation
MS2 analyses were performed by an ultra-high performance LC system 
coupled to a Vion IMS QTOF mass spectrometer (Waters) for obtaining 
spectra with higher mass accuracy. The samples were separated on a 
reversed-phase column (ACQUITY HSS T3 C18 column, 2.1 × 100 mm, 
1.8 µm) coupled with a pre-column (ACQUITY VanGuard HSS T3 C18 
column, 2.1 × 5 mm, 1.8 µm) at a temperature of 50 °C. The mobile 
phases consisted of 0.1% formic acid in water (solvent A), methanol 
(solvent B), 0.1% formic acid in 70:30 acetonitrile/methanol (solvent 
C) and isopropanol (solvent D). The duration of the analytical run was 
10 min with the following flow rate: start condition (0.4 ml min−1), 
0.75 min (0.4 ml min−1), 6 min (0.5 ml min−1), 6.5 min (0.5 ml min−1), 
8 min (0.6 ml min−1), 8.1 min (0.4 ml min−1), 9 min (0.4 mlmin−1), 10 min 
(0.4 ml min−1), and the following gradient: start condition (100% A), 
0.75 min (100% A), 6 min (100% B), 6.5 min (70% C, 30% D), 8 min (70% 
C, 30% D), 8.1 min (70% C, 30% D), 9 min (100% A) and 10 min (100% 
A). Full scan acquisition was performed on selected urine samples 
with a scan range of 50–1,500 m/z. Data-dependent acquisition was 
performed on a selected list of precursors at three different collision 
dissociation energies, 10, 30 and 50 eV.

Mass spectra were manually interpreted, and metabolites were 
identified by matching the precursor ion and fragmentation patterns 
with databases such as Human Metabolome Database (https://hmdb.
ca/), Metlin (https://metlin.scripps.edu/), mzCloud (https://www.
mzcloud.org/), combinatorial database of bile acid conjugates66 
(http://melolab.org/smilib/) and an in-house database (https:// 
gitlab.com/stanstrup_R_packages/mscurate and https://gitlab.com/
stanstrup_R_packages/xcms-annotator). In addition, we used several 
software annotations including GNPS (v30)67 (https://gnps.ucsd.edu/), 
microbeMASST (v2024.08.26)68 (https://masst.gnps2.org/microbe-
masst/) and SIRIUS (v6.0.5)69 (https://bio.informatik.uni-jena.de/
software/sirius/), without obtaining additional plausible matches. 
Furthermore, authentic standards were run together with the samples 
with the highest intensity on the same batch and platform. If needed, 
the authentic standards were sulfated or glucuronidated with either 
biomimetic synthesis70 or chemical synthesis32. The identification 
level of metabolites that were identified was classified according to 
Sumner et al.71 as level I (confirmed by matching to a standard with 
two orthogonal measures (rt, m/z), level II (matching MS2 fragmen-
tation to a spectral library), level III (compound classification) or 
level IV (unknown)25. See Supplementary Tables 7 and 8 for further 
details. 3-Hydroxy-2-oxindole, 5-hydroxyoxindole, 2-picolinic acid, 
4-methylcatechol, xanthine, 2-oxindole-3-acetic acid, pantothenic 
acid, nicotinic acid, tryptophan, sebacic acid, pipecolic acid, glutaric 
acid, citric acid, psedouridine, taurine, 1,3-dimethyluric acid, suberic 
acid and 1,3,7-trimethyluric acid were purchased from Sigma-Aldrich. 
4-Hydroxyhippuric acid, 1-methylxanthine and 1-methyluric acid were 
purchased from Toronto Research Chemicals.

Statistical analysis
Statistical analyses were conducted in R (v 4.2). The area under the 
curves for hydrogen and methane concentrations during the post-
prandial period was calculated using the trapezoid rule in GraphPad 
Prism (v 9.2.0). The normality of data was assessed with the Gaussian 
distribution and Shapiro–Wilk test procedure.

Mixed-effects linear regression models were used to exam-
ine the day-to-day fluctuations and inter-individual variation in 
gut environmental factors using data from all 9 days. The mod-
els were generated using the lme4 R package (v 1.1-31) as lmer (gut 
environmental factor ~ factor(day) + (1 | Participant ID)); moreover, 
ranova function from the lmerTest package (v 3.1-3) was used to 
perform the random effects-likelihood ratio tests to infer whether 

Participant ID significantly contributes to explaining the variation 
in the gut environmental factors. P value of < 0.05 was considered 
statistically significant. Coefficients of intra-individual variation 
were calculated as CVIntra = (s.d.intra/Meanintra) × 100 where mean and 
s.d. were based on all measurements from a single individual over  
the 9 days.

Gut microbiome beta-diversity analysis using Bray–Curtis dis-
tances as well as metabolome and diet beta-diversity analyses using 
Euclidian distances were performed with the phyloseq package  
(v 1.42.0) and PERMANOVA tests by adonis2 function from the vegan 
package (v 2.6) with 999 permutations and strata = Participant ID when 
testing the day-to-day fluctuations.

Single time point correlations were calculated using standard 
Spearman’s rank correlation, as implemented in the Hmisc R pack-
age (v 4.7), and heat maps were generated by the corrplot package 
(v0.92). Repeated measure correlations were performed using the 
rmcorr (v 0.5)72.

db-RDA was performed to quantify the effect sizes of gut envi-
ronmental factors and other variables on the intra-individual and 
inter-individual variation in the gut microbiome (both relative and 
quantitative profiles at genus level) and faecal and urine metabolomes 
(untargeted data, all features). The analyses were performed with 
Bray–Curtis dissimilarity using the capscale function as implemented 
in the vegan package (v 2.6). With regards to intra-individual analyses, 
data available from all samples (day 1 to day 9) and strata = Participant 
ID were used. For the inter-individual analyses, data collected on day 
2 (visit 1) were used separately for all participants (n = 61) and for the 
SmartPill subgroup (n = 50). The statistical significance was deter-
mined by permutation test with 9,999 random permutations (anova.
cca function), and P values were adjusted for multiple testing by false 
discovery rate (Benjamin–Hochberg)73. An adjusted P value (q value) 
below 0.1 was considered significant.

For the untargeted metabolomics data, the area of each m/z 
feature was log-transformed, and missing values were imputed and 
replaced by values reflecting half of the minimum intensity of the 
given m/z feature. Linear regression models and SPLS models were 
performed to examine the relationship between the m/z features 
and the variables of interest (that is, segmental transit time and pH). 
The modelling was performed using the SmartPill-derived data and 
the 24 h postprandial urine metabolome collected at day 2 as well as 
the faecal metabolome closest to the time of the SmartPill egestion. 
The linear mixed models were performed with the lme4 R package  
(v 1.1-31). The multivariate SPLS models were performed with the caret 
R package (v 6.0-92). P values were corrected for multiple testing by 
the Benjamin–Hochberg false discovery rate (q value). Features with 
q < 0.1 were considered to be statistically significant, and only features 
selected by both the linear regression and SPLS were further submitted 
for identification including the MS2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data have been submitted to the National Center for 
Biotechnology Information Sequence Read Archive. BioProject ID, 
PRJNA1044006. MS2 data of global urine and faecal pool samples are 
deposited at MassIVE MSV000095466. Individual-level personally 
identifiable MS2 data from the participants cannot be made freely 
available to protect the privacy of the participants, in accordance with 
the Danish Data Protection Act and European Regulation 2016/679 
of the European Parliament and of the council (GDPR) that prohibits 
open distribution even in pseudoanonymized form. Metabolomics 
data and data tables can be shared upon request. For data inquiries, 
please contact the principal investigator, H.M.R., via email. Access will 
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be evaluated and granted upon signing a data processing agreement 
between the governing legal entities. Source data are provided with 
this paper.

Code availability
No custom code was generated for this work.

References
1.	 David, L. A. et al. Diet rapidly and reproducibly alters the  

human gut microbiome. Nature 505, 559–563 (2014).
2.	 Wu, G. D. et al. Linking long-term dietary patterns with gut 

microbial enterotypes. Science 334, 105–108 (2011).
3.	 Johnson, A. J. et al. Daily sampling reveals personalized diet–

microbiome associations in humans. Cell Host Microbe 25, 
789–802.e5 (2019).

4.	 Guthrie, L. et al. Impact of a 7-day homogeneous diet on 
interpersonal variation in human gut microbiomes and 
metabolomes. Cell Host Microbe 30, 863–874 (2021).

5.	 Falony, G. et al. Population-level analysis of gut microbiome 
variation. Science 352, 560–564 (2016).

6.	 Vandeputte, D. et al. Temporal variability in quantitative human 
gut microbiome profiles and implications for clinical research. 
Nat. Commun. 12, 6740 (2021).

7.	 Procházková, N. et al. Advancing human gut microbiota research 
by considering gut transit time. Gut https://doi.org/10.1136/
gutjnl-2022-328166 (2022).

8.	 Vandeputte, D. et al. Stool consistency is strongly associated 
with gut microbiota richness and composition, enterotypes and 
bacterial growth rates. Gut 65, 57–62 (2016).

9.	 Roager, H. M. et al. Colonic transit time is related to bacterial 
metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 
16093 (2016).

10.	 Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: 
short chain fatty acids as potential therapeutic agents in human 
gastrointestinal and inflammatory disorders. Aliment. Pharmacol. 
Ther. 48, 15–34 (2018).

11.	 Edamatsu, T., Fujieda, A., Ezawa, A. & Itoh, Y. Classification of five 
uremic solutes according to their effects on renal tubular cells. 
Int. J. Nephrol. 2014, 512178 (2014).

12.	 O’Keefe, S. J. D. Diet, microorganisms and their metabolites, and 
colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

13.	 Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of 
fermentation reactions in different regions of the human colon.  
J. Appl. Bacteriol. 72, 57–64 (1992).

14.	 Alakomi, H. L. et al. Lactic acid permeabilizes gram-negative 
bacteria by disrupting the outer membrane. Appl. Environ. 
Microbiol. 66, 2001–2005 (2000).

15.	 Kim, E. R. & Rhee, P. L. How to interpret a functional or motility test 
- colon transit study. J. Neurogastroenterol. Motil. 18, 94–99 (2012).

16.	 Ringel-Kulka, T. et al. Altered colonic bacterial fermentation as a 
potential pathophysiological factor in irritable bowel syndrome. 
Am. J. Gastroenterol. 110, 1339–1346 (2015).

17.	 Steenackers, N. et al. Specific contributions of segmental transit 
times to gut microbiota composition. Gut 71, 1443–1444 (2022).

18.	 Diaz Tartera, H. O. et al. Validation of SmartPill® wireless 
motility capsule for gastrointestinal transit time: intra-subject 
variability, software accuracy and comparison with video capsule 
endoscopy. Neurogastroenterol. Motil. 29, 1–9 (2017).

19.	 Wang, Y. T. et al. Regional gastrointestinal transit and pH studied 
in 215 healthy volunteers using the wireless motility capsule: 
influence of age, gender, study country and testing protocol. 
Aliment. Pharmacol. Ther. 42, 761–772 (2015).

20.	 Safarpour, D. et al. Gastrointestinal motility and response to 
Levodopa in Parkinson’s disease: a proof-of-concept study. Mov. 
Disord. https://doi.org/10.1002/mds.29176 (2022).

21.	 Jensen, M. M. et al. Human gastrointestinal transit and hormonal 
response to different meal types: a randomized crossover study.  
J. Nutr. 152, 1358–1369 (2022).

22.	 Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide  
to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 
(1997).

23.	 Nestel, N. et al. The gut microbiome and abiotic factors as 
potential determinants of postprandial glucose responses: a 
single-arm meal study. Front. Nutr. 7, 1–9 (2021).

24.	 Vieira-Silva, S. et al. Quantitative microbiome 
profiling disentangles inflammation- and bile duct 
obstruction-associated microbiota alterations across PSC/IBD 
diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).

25.	 Reitmeier, S. et al. Arrhythmic gut microbiome signatures  
predict risk of type 2 diabetes. Cell Host Microbe 28,  
258–272.e6 (2020).

26.	 Kuo, B. et al. Comparison of gastric emptying of a nondigestible 
capsule to a radio-labelled meal in healthy and gastroparetic 
subjects. Aliment. Pharmacol. Ther. 27, 186–196 (2008).

27.	 Nandhra, G. K. et al. Normative values for region-specific colonic 
and gastrointestinal transit times in 111 healthy volunteers using 
the 3D-Transit electromagnet tracking system: influence of age, 
gender, and body mass index. Neurogastroenterol. Motil. 32, 
e13734 (2020).

28.	 Asnicar, F. et al. Blue poo: impact of gut transit time on the gut 
microbiome using a novel marker. Gut 70, 1–10 (2021).

29.	 LaBouyer, M. et al. Higher total faecal short-chain fatty acid 
concentrations correlate with increasing proportions of butyrate 
and decreasing proportions of branched-chain fatty acids across 
multiple human studies. Gut Microbiome 3, 1–14 (2022).

30.	 Falony, G., Vieira-Silva, S. & Raes, J. Richness and ecosystem 
development across faecal snapshots of the gut microbiota. Nat. 
Microbiol. 3, 526–528 (2018).

31.	 Fujita, T., Hada, T. & Higashino, K. Origin of d- and l-pipecolic 
acid in human physiological fluids: a study of the catabolic 
mechanism to pipecolic acid using the lysine loading test. Clin. 
Chim. Acta 287, 145–156 (1999).

32.	 Meslier, V. et al. Mediterranean diet intervention in overweight 
and obese subjects lowers plasma cholesterol and causes 
changes in the gut microbiome and metabolome independently 
of energy intake. Gut https://doi.org/10.1136/gutjnl-2019-320438 
(2020).

33.	 Andersen, M. B. S. et al. Untargeted metabolomics as a screening 
tool for estimating compliance to a dietary pattern. J. Proteome 
Res. 13, 1405–1418 (2014).

34.	 Manach, C., Scalbert, A., Morand, C., Rémésy, C. & Jiménez, L. 
Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 
727–747 (2004).

35.	 Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 
1035–1078, https://doi.org/10.1002/cphy.c120027 (2013).

36.	 Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D. 
Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing 
acetogenic bacterium isolated from human feces. Arch. Microbiol. 
166, 176–183 (1996).

37.	 Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology 
of butyrate-producing bacteria from the human large intestine. 
FEMS Microbiol. Lett. 294, 1–8 (2009).

38.	 Tigchelaar, E. F. et al. Gut microbiota composition associated with 
stool consistency. Gut 65, 540–542 (2016).

39.	 Raba, G., Adamberg, S. & Adamberg, K. Acidic pH enhances 
butyrate production from pectin by faecal microbiota. FEMS 
Microbiol. Lett. 368, 1–8 (2021).

40.	 Folz, J. et al. Human metabolome variation along the upper 
intestinal tract. Nat. Metab. https://doi.org/10.1038/ 
s42255-023-00777-z (2023).

http://www.nature.com/naturemicrobiology
https://doi.org/10.1136/gutjnl-2022-328166
https://doi.org/10.1136/gutjnl-2022-328166
https://doi.org/10.1002/mds.29176
https://doi.org/10.1136/gutjnl-2019-320438
https://doi.org/10.1002/cphy.c120027
https://doi.org/10.1038/s42255-023-00777-z
https://doi.org/10.1038/s42255-023-00777-z


Nature Microbiology | Volume 9 | December 2024 | 3210–3225 3224

Article https://doi.org/10.1038/s41564-024-01856-x

41.	 Shalon, D. et al. Profiling the human intestinal environment under 
physiological conditions. Nature https://doi.org/10.1038/s41586-
023-05989-7 (2023).

42.	 Parthasarathy, G. et al. Relationship between microbiota of the 
colonic mucosa vs feces and symptoms, colonic transit, and 
methane production in female patients with chronic constipation. 
Gastroenterology 150, 367–379.e1 (2016).

43.	 Cirstea, M. S. et al. Microbiota composition and metabolism are 
associated with gut function in Parkinson’s Disease. Mov. Disord. 
35, 1208–1217 (2020).

44.	 Gabriele, S. et al. Slow intestinal transit contributes to elevate 
urinary p-cresol level in Italian autistic children. Autism Res. 9, 
752–759 (2016).

45.	 Manandhar, M. & Cronan, J. E. Pimelic acid, the first precursor of 
the Bacillus subtilis biotin synthesis pathway, exists as the free 
acid and is assembled by fatty acid synthesis. Mol. Microbiol. 104, 
595–607 (2017).

46.	 Cronan, J. E. & Lin, S. Synthesis of the α,ω-dicarboxylic acid 
precursor of biotin by the canonical fatty acid biosynthetic 
pathway. Curr. Opin. Chem. Biol. 15, 407–413 (2011).

47.	 Dong, Y. et al. Development and validation of diagnostic models 
for immunoglobulin A nephropathy based on gut microbes. Front. 
Cell Infect. Microbiol. 12, 1–15 (2022).

48.	 Coker, O. O. et al. Altered gut metabolites and microbiota 
interactions are implicated in colorectal carcinogenesis and can be 
non-invasive diagnostic biomarkers. Microbiome 10, 1–12 (2022).

49.	 Li, J. et al. Interplay between diet and gut microbiome, and 
circulating concentrations of trimethylamine N-oxide: findings 
from a longitudinal cohort of US men. Gut 71, 724–733 (2022).

50.	 Murtagh, F. E. M., Addington-Hall, J. & Higginson, I. J. The 
prevalence of symptoms in end-stage renal disease: a systematic 
review. Adv. Chronic Kidney Dis. 14, 82–99 (2007).

51.	 Sinha, A. K. et al. Dietary fibre directs microbial tryptophan 
metabolism via metabolic interactions in the gut microbiota. Nat. 
Microbiol. 9, 1964–1978 (2024).

52.	 Tran, K., Brun, R. & Kuo, B. Evaluation of regional and whole gut 
motility using the wireless motility capsule: relevance in clinical 
practice. Ther. Adv. Gastroenterol. 5, 249–260 (2012).

53.	 S, M., HP, P. & FK, F. Wireless capsule motility: comparison of the 
SmartPill GI monitoring system with scintigraphy for measuring 
whole gut transit. Dig. Dis. Sci. 54, 2167–2174 (2009).

54.	 Bartholomé, R. et al. Paracetamol as a post prandial marker for 
gastric emptying, a food–drug interaction on absorption. PLoS 
ONE 10, 1–9 (2015).

55.	 Ambrus, A. et al. Example of a protocol for identification of 
misreporting (under- and over-reporting of energy intake) based on 
the PILOT-PANEU project. EFSA/EU J. https://www.efsa.europa.eu/
sites/default/files/efsa_rep/blobserver_assets/3944A-8-2-1.pdf (2013).

56.	 Mortensen, M. S. Optimized DADA2 pipeline for 16S rRNA gene 
sequencing using IonTorrent. DTU Data https://doi.org/10.11583/
DTU.22657339.v1 (2023).

57.	 Callahan, B. J. et al. DADA2: High-resolution sample inference 
from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

58.	 Vandeputte, D. et al. Quantitative microbiome profiling links gut 
community variation to microbial load. Nature 551, 507–511 (2017).

59.	 Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. 
M. rrnDB: improved tools for interpreting rRNA gene abundance 
in bacteria and archaea and a new foundation for future 
development. Nucleic Acids Res. 43, D593–D598 (2015).

60.	 Chambers, M. C. et al. A cross-platform toolkit for mass 
spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

61.	 Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, 
G. XCMS: processing mass spectrometry data for metabolite 
profiling using nonlinear peak alignment, matching, and 
identification. Anal. Chem. 78, 779–787 (2006).

62.	 Chambers, J. M. & Hastie, T. Statistical Models in S (Chapman & 
Hall/CRC, 1992).

63.	 Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic 
quotient normalization as robust method to account for 
dilution of complex biological mixtures. Application in 1H NMR 
metabonomics. Anal. Chem. 78, 4281–4290 (2006).

64.	 Kuhl, C. et al. CAMERA: an integrated strategy for compound 
spectra extraction and annotation of liquid chromatography/
mass spectrometry data sets. Anal. Chem. https://doi.org/10.1021/
ac202450g (2011).

65.	 Schmid, R. et al. Integrative analysis of multimodal mass spectrometry  
data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

66.	 Hoffmann, M. A. et al. High-confidence structural annotation of 
metabolites absent from spectral libraries. Nat. Biotechnol. 40, 
411–421 (2022).

67.	 Wang, M. et al. Sharing and community curation of mass 
spectrometry data with global natural products social molecular 
networking. Nat. Biotechnol. 34, 828–837 (2016).

68.	 Zuffa, S. et al. microbeMASST: a taxonomically informed mass 
spectrometry search tool for microbial metabolomics data. Nat. 
Microbiol. 9, 336–345 (2024).

69.	 Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass 
spectra into metabolite structure information. Nat. Methods 16, 
299–302 (2019).

70.	 Cuparencu, C. S. et al. Identification of urinary biomarkers after 
consumption of sea buckthorn and strawberry, by untargeted 
LC–MS metabolomics: a meal study in adult men. Metabolomics 
12, 1–20 (2016).

71.	 Sumner, L. W. et al. Proposed minimum reporting standards for 
chemical analysis Chemical Analysis Working Group (CAWG) 
Metabolomics Standards Initiative (MSI). Metabolomics 3,  
211–221 (2007).

72.	 Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. 
Front. Psychol. 8, 456 (2017).

73.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J. R. Stat. 
Soc. B 57, 289–300 (1995).

Acknowledgements
We thank all the dedicated volunteers who participated in the PRIMA 
study. We acknowledge our colleague J. Stanstrup for help with the 
metabolomics data preprocessing, the students A. Seer, I. Barrau, S. H. 
Kaas and K. L. L. Clemmensen, as well as the bioanalysts S. F. B. Soltane 
and J. G. Jørgensen for their assistance during the study visits and 
laboratory work at the Department of Nutrition Exercise and Sports. We 
also thank Ö. C. Zeki for her help with metabolite annotation and L. L. 
Stevner for her guidance on General Data Protection Regulation (GDPR) 
and study protocol writing. Furthermore, we thank K. A. Kristensen 
(Technical University of Denmark) for the preparation for sequencing. We 
also thank D. Nguyen (KU Leuven) for the help with flow cytometry and J. F. 
V. Castellanos (KU Leuven) for the help with QMP analysis. This study was 
supported by the Novo Nordisk Foundation (NNF19OC0056246; PRIMA—
toward Personalized dietary Recommendations based on the Interaction 
between diet, Microbiome and Abiotic conditions in the gut). L.O.D. was 
supported by a Semper Ardens grant from the Carlsberg Foundation 
(CF15-0574). The funders had no role in study design, data collection and 
analysis, decision to publish or preparation of the manuscript.

Author contributions
N.P., T.R.L., L.O.D. and H.M.R. conceived and designed the human 
study as part of the PRIMA collaboration headed by T.R.L. N.P. 
conducted the study under the supervision of L.O.D. and H.M.R. 
Urine metabolomics was performed by N.P. Metabolite annotations 
were done by N.P., G.L.B. and L.O.D. Metabolite synthesis and fine 
identification were done by G.L.B. Faecal SCFAs were analysed by E.T. 

http://www.nature.com/naturemicrobiology
https://doi.org/10.1038/s41586-023-05989-7
https://doi.org/10.1038/s41586-023-05989-7
https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/3944A-8-2-1.pdf
https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/3944A-8-2-1.pdf
https://doi.org/10.11583/DTU.22657339.v1
https://doi.org/10.11583/DTU.22657339.v1
https://doi.org/10.1021/ac202450g
https://doi.org/10.1021/ac202450g


Nature Microbiology | Volume 9 | December 2024 | 3210–3225 3225

Article https://doi.org/10.1038/s41564-024-01856-x

and N.P. The faecal metabolome was analysed by M.S.J. and N.P. M.F.L. 
generated the microbiome data. Bacterial load was done by N.P. under 
the supervision of J.R. Statistical analyses were performed by N.P. with 
help from M.F.L. and M.A.R. Expert supervision was performed by J.R., 
T.R.L., L.O.D. and H.M.R. N.P. and H.M.R. drafted the manuscript. All 
authors contributed to and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41564-024-01856-x.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41564-024-01856-x.

Correspondence and requests for materials should be addressed to 
Henrik M. Roager.

Peer review information Nature Microbiology thanks Pieter C. Dorrestein 
and the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with  
regard to jurisdictional claims in published maps and  
institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution and 
reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if you modified the licensed 
material. You do not have permission under this licence to share 
adapted material derived from this article or parts of it. The images 
or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative 
Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemicrobiology
https://doi.org/10.1038/s41564-024-01856-x
https://doi.org/10.1038/s41564-024-01856-x
https://doi.org/10.1038/s41564-024-01856-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nature Microbiology

Article https://doi.org/10.1038/s41564-024-01856-x

Extended Data Fig. 1 | CONSORT flow diagram of the PRIMA study. This diagram illustrates the flow of participants through each stage of the PRIMA study, including 
enrollment, allocation, visit 1 and visit 2, and analysis.
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Extended Data Fig. 2 | Individual microbiome and metabolome profiles. (a) Individual Bray Curtis β-diversity ordination of quantitative faecal microbiome profiles 
over 9 study days (n = 61) (b) Euclidian β-diversity ordination of urinary metabolomes profiles over 9 study days (n = 49, 12 individuals were removed due to LC-MS 
batch effect).
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Extended Data Fig. 3 | Intra-individual variations in faecal microbiome and 
metabolome, and an example of a SmartPill profile. Contributions of dietary 
and gut factors on intra-individual variations in (a) relative microbiome 
profiles and (b) faecal metabolome. The analysis was performed with distance-
based redundancy analysis (db-RDA) with permutation test on daily relative 
microbiome data (n = 61, 9 days) and untargeted faecal metabolome data (n = 61, 
3 days). The asterisks indicate statistical significance after adjustment for 
multiple testing (*q-value < 0.05). (c) An example of a pH profile measured by 

the SmartPill. Segmental transit times were determined based on pH changes 
upon gastric emptying, ileocaecal junction and body exit as indicated. The 
proximal-, distal-, and sigmoid-colon pH were determined as median values in 
each of the segments of the colon based on an approximation of the transit time 
based on previous data showing that the first 32% followed by 33 % and 35 % of 
CTT corresponds to the proximal, distal, and sigmoid colon, respectively. In 
addition, the median pH of 10 min before the capsule egestion was registered as 
rectal pH.
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Extended Data Fig. 4 | Correlations between various factors assessed in the 
trial, and sex differences in colonic transit time. (a) Spearman correlation 
analysis between segmental transit times assessed by the SmartPill, corn 
transit time, various proxy markers of transit time, gut factors, and subject 
characteristics. The colour gradient shows the Spearman correlation coefficient 
and the asterisks indicate statistical significance (****q < 0.001,***q < 0.01, 

** q < 0.05,*q < 0.1). SBT; small bowel transit time, CTT; colonic transit time, 
WGTT; whole gut transit time). Differences in colonic transit time according to 
(b) gender and (c) menstruation (only women, n = 43). Wilcoxon test; two-sided 
*p < 0.05, boxplot center represents median and box interquartile range (IQR). 
Whiskers extend to most extreme data point <1.5 IQR.
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Extended Data Fig. 5 | Repeated measures correlation between gut factors and microbial metabolites. The colour lines show the individual correlation between 
each pair of tested variables for each of the study days using data from all 61 participants. The grey dashed lines, the correlation coefficients (r) and the p values 
indicate the overall trends.
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