nature microbiology

Article

https://doi.org/10.1038/s41564-024-01856-x

Gut physiology and environment explain
variationsin humangut microbiome
compositionand metabolism

Received: 13 December 2023

Accepted: 11 October 2024

Published online: 27 November 2024

Nicola Prochazkova®’, Martin F. Laursen ®2, Giorgia La Barbera®’,
Eirini Tsekitsidi®, Malte S. Jorgensen®", Morten A. Rasmussen*®,
Jeroen Raes®%’, Tine R. Licht®?2, Lars O. Dragsted ® ' & Henrik M. Roager®'

W Check for updates

The human gut microbiome is highly personal. However, the contribution of

gut physiology and environment to variations in the gut microbiome remains
understudied. Here we performed an observational trial using multi-omics
to profile microbiome composition and metabolismin 61 healthy adults for

9 consecutive days. We assessed day-to-day changes in gut environmental
factors and measured whole-gut and segmental intestinal transit time

and pH using a wireless motility capsulein asubset of 50 individuals.

We observed substantial daily fluctuations, with intra-individual variations in
gut microbiome and metabolism associated with changes in stool moisture
and faecal pH, and inter-individual variations accounted for by whole-gut
and segmental transit times and pH. Metabolites derived from microbial
carbohydrate fermentation correlated negatively with the gut passage time
and pH, while proteolytic metabolites and breath methane showed a positive
correlation. Finally, we identified associations between segmental transit
time/pH and coffee-, diet-, host- and microbial-derived metabolites. Our work
suggests that gut physiology and environment are key to understanding the
individuality of the human gut microbial composition and metabolism.

Dietinfluences the gut microbial composition and metabolism". How-
ever, even with identical dietary intake, the gut microbiome varies**,
suggestingthat other factorsinthe gut contribute to these variations.
Gut transit time accounts for substantial variation in the microbiome
composition of healthy populations®®, with longer transit time asso-
ciated with increased microbial protein degradation and methane
production’. While short-chain fatty acids (SCFAs), the main microbial
products of saccharolysis, are typically considered beneficial', micro-
bial proteolysis results in metabolites associated with poor health

outcomes, including hydrogen sulfide,ammonia, branched-chain fatty
acids (BCFAs), p-cresol, indole and phenylacetate™'.
ChangesinpHalongthegutarealso linked to gut microbial compo-
sitionand metabolism". The presence of SCFAs and other organic acids
lowers colonic pH®, inhibiting bacteria sensitive to acidic environments'.
Yet, littleisknownabout how the gut environment, determined by physi-
ological factors such as transit time and luminal pH, associates with
diet-host-microbiota metabolism. Understanding these factors could
be crucial for future personalized dietary microbiome-based strategies.
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Transit time can be assessed using wireless motility capsules
(SmartPills), which measure intraluminal pH, temperature and pres-
sure along the gastrointestinal tract that allow for the determination
of segmental transit times. SmartPills are one of the standard clinical
methods for directly assessing transit time, along with radio-opaque
markers and scintigraphy®, and have been used in previous microbi-
ome studies'®".

In this Article, we conducted a 9 day observational study with
61 healthy volunteers and assessed whole-gut and segmental transit
time and pH by SmartPills. We also collected data on bowel habits,
dietary intake, and breath hydrogen and methane levels and pro-
filed urine and faecal samples using multi-omics techniques. This
allowed usto follow and link inter-individual and day-to-day changes
in the gut environment, gut microbiota and microbiota-derived
metabolites.

Results

Study design and participant characteristics

We enrolled 61 healthy participants (aged 39 +13.5 years, with body
massindex (BMI) 0f23.6 + 2.8 kg m%; Table 1and Extended Data Fig. 1)
and asked them to maintain their habitual lifestyle and diet for 9 con-
secutive days (Fig.1a). The study included two visits (day 2 and day 9)
where fasting blood glucose, insulin and C-peptide, as well as breath
hydrogen and methane, were measured (Table 1). On the first visit,
participants were given a breakfast that accounted for 25% of their
daily energy needs (Supplementary Table 1) to provide a standard-
ized meal before a subset of the volunteers (n=50) ingested a wire-
less motility capsule (SmartPill) to measure whole-gut and segmental
transit time and pH'®. While previous investigations used granolabars
(SmartBar) before the monitoring'>*°, we used a complex meal similar
to arecent study” to investigate diet-microbiota interactions. Post-
prandial breath and urine samples were obtained asindicated in Fig. 1a.
The participants recorded daily 24 h dietary records (days 1-8) using
the myfood24 nutrition platform (https://www.myfood24.org); noted
daily bowel habitsincluding defecation time, stool consistency assessed
by the Bristol Stool Form Scale (BSS)** and stool frequency (number of
bowel movements per day); and collected daily urine (the first morn-
ing sample) and faecal samples (the first bowel movement). The study
population had normal bowel habits (Table 1) with a median BSS of
type 4 and 1bowel movement per day. Transit time was also estimated
by a self-administered sweet-corn transit time test* on days 3 and
5 (corn TT). We measured faecal water content (indication of stool
moisture, a proxy marker of transit time*), pH and microbial load
in all collected faecal samples (n = 484). All collected urine samples
(daily spot and postprandial samples, n =1,154) and a subset of faecal
samples (n=170) were profiled by untargeted liquid chromatogra-
phy-mass spectrometry (LC-MS)-metabolomics to obtain urine and
faecal metabolomes. Finally, we obtained the gut microbiome com-
position via 16S ribosomal RNA (rRNA) gene sequencing of a subset
of faecal samples (n =362) and assessed both relative microbiome
profiles (RMPs) and quantitative microbiome profiles (QMPs) after
adjusting for microbial load*.

Gut environment stability varies for each individual

Daily sampling allowed us to evaluate the fluctuations in gut environ-
mental factors, faecal and urine metabolomes, gut microbiomes and
diets within and between healthy adults over time (Supplementary
Fig.1). First, we observed varying degrees of day-to-day fluctuations
within individuals for faecal pH (coefficient of intra-individual varia-
tion (CVy,,) 0.3-8.1%), BSS (0-57.8%), stool frequency (0-73.1%), stool
moisture (2.2-24%) and microbial load (7.6-72.7%) (Fig.1b and Supple-
mentary Table 2), suggesting that some individuals have more stable
gutenvironments than others. Most of the gut environmental factors
varied withinindividuals over the 9 days, whereas faecal pH remained
relatively stable (Fig. 1b and Supplementary Table 3a). Participant ID

Table 1| Participants’ characteristics (N=61)

Meants.d./Median Range
(25th-75th percentiles)
Sex, male/female 18/43
Age (years) 39+13.5 20-66
BMI (kgm™) 23.6+2.8 17.6-29.5
Fasting glucose (mmoll™)? 5.1(4.9-5.4) 4.4-6.9
Fasting insulin (mmol ™) 32.5(24.2-51.7) 14.7-132.0
Fasting C-pep (pmol L) 407 (321-520) 186-771
Dietary intake®
Total energy intake (kcald™) 2256+605 1,276-5,091
Carbohydrate (gd™) 231.4+76.9 51-521
Carbohydrate (E%) 41187 14.2-69.4
Protein (gd™) 86.1£29.5 32-209
Protein (E%) 15.5+4.4 5.5-35.6
Fat(gd™) 99.0+34.4 34-256
Fat (E%) 39.4+8.2 16.5-62.3
Fibre (gd™) 24.0+10.3 3-62
Fibre intake (g per 10.8+3.9 2-23
1,000kcald™)
Gut environmental factors’
Stool consistency, BSS 4(3-5) 1-7
Stool frequency (n per day) 1(1-2) 0-5
Stool moisture (%) 73 (69-77) 28-93
Faecal pH 6.8 (6.3-7.0) 5.4-7.3
Faecal SCFAs (umol per g of faeces)’
Acetate 16.11(8.29-26.06) 0.85-76.07
Propionate 2.49 (1.566-3.93) 0.01-33.80
Butyrate 1.43 (0.78-2.09) 0.04-5.96
Valerate 1.20 (0.89-1.69) 0.33-4.10
Caproate 0.54 (0.13-1.07) 0.01-6.88
Faecal BCFAs (umol per g of faeces)®
2-Methylbutyrate 0.54(0.39-0.71) 0.07-3.24
Isovalerate 0.41(0.28-0.55) 0.08-2.23
Isobutyrate 0.29 (0.22-0.37) 0.07-1.39
Breath®
Fasting hydrogen (p.p.m.) 6.5 (4.0-12.0) 0.5-51
Fasting methane (p.p.m.) 1.0 (0-18) 0-67.5

E%, energy per cent; p.p.m., parts per million. ?Mean of all records/measurements.

explained asignificant proportion of variation for day-to-day fluctua-
tionsinall of the gut environmental factors (Supplementary Table 3b),
indicating that the stability of the gut environment is to some extent
personal.

Next, we performed a permutational multivariate analysis
of variance (PERMANOVA) on the QMPs, urine and faecal metabo-
lomes and found that the individual explained more than 50% of the
inter-individual variations in all three cases (Fig. 1c). The sampling
day explained on average 6.7% of the urine metabolome variation
but did not explain day-to-day variations in the gut microbiome and
faecal metabolome. (Fig. 1c). By inspecting the -diversities of indi-
vidual microbiome and metabolome profiles, we observed that some
individuals showed less variation over the study period than others
(Extended DataFig. 2).
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Fig. 1| PRIMA study design and variations in gut environmental factors, gut
microbiome and metabolomes. a, PRIMA study design. The study included
twossite visits, at which fasting blood and breath samples were taken. At visit

1, anthropometric measurements were attained, and all participants were

given astandardized breakfast; a subset of 50 volunteers ingested SmartPills
immediately after. Postprandial breath hydrogen and methane were measured
every 30 min for 6 h, and postprandial urine was collected at 0.5 hand every hour
until 24 hasindicated. On days 3 and 5, participants performed a sweet-corn
test to measure WGTT. In addition, daily 24 h dietary records (days 1-8), records
of bowel habits (stool consistency, stool frequency and time of defecation)

and daily urine and faecal samples were obtained. Solid line indicates sample

collection onsite and dashed line sample collection at home. b, Inter- and intra-
individual variationsin the gut environmental factors over the 9 consecutive
days. Thered and blue lines represent median and mean values, respectively.
Grey lines represent intra-individual fluctuations over time. Asterisks indicate
the statistical significance of mixed-effect models accounting for repeated
measures (two-sided ***P < 0.001, **P < 0.01, *P < 0.05; NS, not significant;

see Supplementary Table 3 for details; no adjustment for multiple testing was
applied). ¢, Percentage of variation explained by individual and study day in the
gut microbiome and urine and faecal metabolomes based on PERMANOVA tests
(two-sided *P < 0.05).

Stool moisture and pH explain daily gut microbiome
fluctuations

To explore what drives the intra-individual fluctuation in the metabo-
lomes and the microbiome, we performed distance-based redundancy
analysis (db-RDA). We considered daily dietary macronutrients and
fibres, as well as the gut environmental factors. None of the dietary

components explained intra-individual fluctuations in the gut micro-
biome or metabolomes. By contrast, stool moisture, faecal pH, BSS
and time of defecation markedly affected the gut microbiome (QMP,
genus level; Fig. 2a), explaining 3.5%, 2.5%, 2% and 1.3% of the varia-
tions, respectively. Similar results were observed using the RMP data
(Extended Data Fig. 3a) and in previous studies®*. Notably, these
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explanatory factors are proxies for gut transit time, suggesting that
day-to-day variations in transit time are reflected in the gut microbi-
ome variation.

Stool moisture and faecal pH further explained 3.1% and 3%,
respectively, of the intra-individual variation in urine metabolomes,
despite subtle day-to-day fluctuations (Fig. 2b). This suggests that
even small changes in the colonic water content and pH may be
associated with the host-microbiota metabolism. However, these
observations could also be influenced by daily diet variations. Gut
environmental factors did not contribute to the intra-individual
fluctuations in the faecal metabolomes (Extended Data Fig. 3b). It
should be noted that faecal metabolome data were derived only from
three consecutive days, and stool moisture still tended (P=0.081) to
have an effect.

Transit times and pH vary between individuals

SmartPills were used to obtain whole-gut transit time (WGTT), gastric
emptying time (GET), small-bowel transit time (SBT), colonic transit
time (CTT) and intestinal transit time (ITT; SBT + CTT), as well as pH
throughout the gastrointestinal tract (GIT) (Extended DataFig. 3c).In
8 individuals, the capsule was retained in the stomach for over 8 h, a
common event reported in other studies'®*. Therefore, GETand WGTT
values from these participants were excluded from our analyses. In
addition, we could not determine CTT and WGTT in one participant
duetoasignal loss.

The median values of transit time were as follows: GET, 4.8 h (range
3.1-6.2 h); WGTT, 23.3 h (12.4-72.3 h); CTT, 13.6 h (2.1-63.5 h); and
SBT, 5.1h (2.5-10.3 h), in agreement with previously reported data on
healthy populations?. For comparison, the corn TT showed a median of
23.6 h (10.8-109.7 h) atday 3and 19.7 h (12.0-84.5 h) atday 5. Further-
more, we found a strong correlation between the two corn TT meas-
urements (Spearman correlation coefficient (SCC) = 0.8, P<0.001)
suggesting consistency within individuals. The median of the mean
cornTT across the two days was 21.7 h (11.7-97.1 h) (Fig. 2¢), similar to
the WGTT obtained by the SmartPill. However, we did not observe any
correlation between the WGTT and corn TT (Extended Data Fig. 4a),
indicating that despite providing similar results on average, individu-
ally, these two methods showed different results.

When exploring the relationships between segmental transit
times, corn TT, gut environmental factors and participant character-
istics (Extended Data Fig. 4a), we found that the transit times recorded
by both methods were negatively correlated to BSS, as also reported
previously*?%, We also observed that women had significantly longer
CTT compared with men, while there was no effect of menstruation
status among the women (Extended Data Fig. 4b).

Large inter-individual variations in the gastrointestinal segmental
pH were also observed (Fig. 2d) with the following median pH values
in the upper GIT: the stomach (0.9, range 0.5-4.9), duodenum (6.1,
5.0-7.2) and small intestine (7.4, 6.4-8.2). pH in the proximal colon
was slightly acidic (6.3, 5.3-7.0) followed by a gradual increase in the
distal colon (6.9,5.0-8.2) and sigmoid colon (7.2,5.6-8.6). Interestingly,
a small decrease in pH was observed from the sigmoid colon to the
rectum (7.0,5.7-8.6) and also in the faecal pH (6.9, 6.6-7.3), indicating
that acidifying processes occur after entry into the rectum.

CTT and pH contribute to gut microbiome variations
To quantify how participant characteristics, clinical variables, diet and
gut environmental and physiological factors explain inter-individual
variations in the gut microbiome and metabolomes, we performed a
db-RDA using data derived from faecal and 24 h urine collections on
day 2 from all participants (n = 61; Supplementary Table 4). Moreo-
ver, we performed the same analysis with whole-gut and segmental
transit times and pH derived from the SmartPills on day 2 (n = 50).
Stool moisture and distal colon pH were key factors associated with
inter-individual variationin QMPs (Fig. 2e), accounting for 5.5% and 5%
ofthe variation, respectively,on day 2 and also other days (Supplemen-
tary Table 4). Unlike previously reported datafromlarger cohorts’, BSS
did not explainasignificant proportion of the variationin QMP in this
population. WGTT, CTT, corn TT and faecal pH explained 9.1%, 6.2%,
4.9% and 5.4%, respectively, of the inter-individual variations in the
24 hurine metabolome, in comparison to age, which explained 4.5% of
thevariation (Fig. 2f). These contributions were consistent when test-
ing against the urine metabolomes on different days (Supplementary
Table 4). By contrast, segmental transit time did not contribute to the
inter-individual variation in the faecal metabolomes, whereas pH in
the distal colon and fibre intake showed the largest effects explaining
6.8% and 5.9% of the variations, respectively; however, this was not
significant after adjusting for multiple testing (Supplementary Table 4).
Wealso tested the effect of menstruation during the study period
for women (non-menstruating, n = 30; menstruating, n =13), which
showed effect sizes of 3.7% (gut microbiome) and 3.6% (urine metab-
olome), however without statistical significance. Considering the
notable effect size of age on urine metabolome and a significant age
difference between the two groups of women (P = 0.01), age might con-
tribute to these observed effects. Our results emphasize that the per-
sonal gut environment contributes considerably to the inter-individual
differences in the gut microbiota and urinary metabolic profiles.

Individual gut microbiota and metabolite profiles are
dynamic

We next assessed intra-individual fluctuations in microbial-derived
metabolites including breath hydrogen and methane, faecal SCFAs
(acetate, propionate, butyrate, valerate and caproate) and BCFAs
(isobutyrate, isovalerate and 2-methylbutyrate; Table 1), as well as
16 other microbial-derived metabolites detected in faeces and urine,
including the proteolytic markers, p-cresol sulfate (PCS), phenylacetyl-
glutamine (PAGIn) and indoxyl sulfate. Substantial day-to-day fluctua-
tions were observed (Fig. 3a and Supplementary Fig.2). Breath methane
and hydrogen had a median CV,,,,, 0f 141% and 47%, respectively, with
amoderate positive correlation between the two time points for both
gases (hydrogen, SCC = 0.42, P< 0.001; methane, SCC = 0.66, P < 0.001).
Faecal concentrations of the SCFAs and BCFAs fluctuated consider-
ably from day to day (median CV,,, ranging from 26% to 40%) with
valerate varying the least and acetate the most. Similarly, the relative
abundances of the proteolytic markers varied substantially from day to
daywithamedian CV,,,, 0f26%,42% and 39% for PAGIn, indoxyl sulfate
and PCS, respectively. These findings suggest that microbial-derived
metabolites in breath, faeces and urine fluctuate from day to day on
a habitual diet.

Fig.2|Intra- and inter-individual variations in gut microbiome and

urine metabolome explained by gut environment. a,b, Contributions of
dietary and gut environmental factors onintra-individual variations in gut
microbiome (QMP, all days) (a) and urine metabolome (all days, all features)
(b). ¢, Boxplots showing segmental and WGTT measured by the SmartPill
(n=50) atday 2 and mean transit time of sweet corn (n = 61, day 3 and day 5)
witheach dotrepresenting anindividual. d, Boxplots showing pH throughout
the gastrointestinal tract measured by the SmartPill (n = 50) and in faeces
measured by pH meter at day 2 (n = 61) with each dot representing an individual.
e.f, Contributions of clinical variables, dietary components, gut environmental

and physiological factors and participant characteristics to inter-individual
variations in the gut microbiome (QMP, sample closest to the capsule body exit)
(e) and urine metabolome (24 h, day 2, all features) (f). Panels a, b, e and fwere
quantified by db-RDA with permutation tests using Bray—-Curtis distances. Effect
sizes are plotted. The asterisks indicate statistical significance after adjustments
for multiple testing (*q < 0.1). See Extended Data Fig. 3a,b for RMPs and faecal
metabolome. Boxplot centrein cand d represents median, and box represents
interquartile range (IQR). Whiskers extend to most extreme data point <L.5IQR.
SB, smallbowel; CH,, breath methane; H,, breath hydrogen.
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Fig. 3 | Fluctuations in microbial metabolites and their correlations to gut
physiology and environment. a, Intra-individual fluctuations in microbial
metabolites measured in breath, faeces and urine. Boxplots show coefficients
ofintra-individual variations. Each dot represents an individual (n = 61). Boxplot
centre represents median, and box represents IQR. Whiskers extend to most
extreme data point <1.5IQR. b,c, Correlations between microbial metabolites
and gut physiology and environmental factors as assessed by repeated measures
correlation coefficient (b) or the Spearman correlation coefficient (c).

The asterisks indicate statistical significance after adjustment for multiple
testing (****¢ < 0.001, **g < 0.01, **¢ < 0.05, *q < 0.1). Blue, brown and yellow bars
indicate breath, faecal and urine metabolites, respectively. The black barinb
indicates repeated measure correlations where daily values for each variable
have been used (Extended Data Fig. 5), whereas the green bar in cindicates
analysis based on data collected on day 2. Postprandial hydrogen and methane
were only measured at one time point and therefore were notincluded in the
repeated measure analysis. (), faecal; TMAO, trimethylamine N-oxide.

Next, we used repeated measures (Fig. 3b, Extended DataFig.5and
Supplementary Table 5) and Spearman correlation analysis (Fig. 3¢c)
to find links between specific microbial metabolites and the gut envi-
ronment along with diet. Faecal SCFAs were negatively correlated to
faecal pH with butyrate showing the strongest correlation (r=-0.77,
¢ <0.001) inlinewith previous human studies®. Moreover, higher fae-
cal propionate (SCC =-0.25, g < 0.1) was linked to shorter CTT with a
similar tendency observed for faecal butyrate (SCC =-0.29, P< 0.05,

g =0.3).Faecal butyrate also tended to negatively correlate with rectal
pH(SCC=-0.37,P<0.05,g=0.2) but not with pHin other segments of
the colon, suggesting that butyrate production may contributeto the
reduced pH observed in the rectum and faeces.

Proteolytic markersincluding urinary PAGIn and faecal BCFAs were
negatively correlated to stool moisture, and urinary PCS correlated
positively with faecal pH (PAGIn, r=-0.12,g < 0.1;isobutyrate, r=-0.39,
g <0.05; isovalerate, r=-0.37, g < 0.1; 2-methylbutyrate, r=-0.43,
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g<0.05; PCS, r=0.12, g <0.1). Similarly, higher urinary levels of PCS
were associated with longer CTT and ITT (SCC = 0.48, SCC = 0.44,
respectively, g < 0.05), with similar tendencies observed for PAGIn
and indole-lactic acid. Furthermore, breath methane was linked to
lower stool moisture and longer CTT. It is worth noting that none of
this was shown for SBT, indicating that CTT determines the abundance
ofthese metabolites and supports the hypothesis that longer passage
through the colon is linked to microbial proteolysis possibly due to
the depletion of substrates for saccharolytic fermentation®*°. Urinary
indoxyl-glucuronide was positively associated with pH in the distal
colon (SCC=0.33, g<0.1), and a similar trend was found between
urinary PCS and rectal pH (SCC =0.32, P< 0.05). These metabolites
did not correlate to pH in the small intestine and the proximal colon,
indicating a higher contribution of microbial proteolysis to pH in
the distal gut compared with the proximal gut. In summary, CTT and
colonic pH, but not SBT and small-intestinal pH, are associated with
levels of several microbial metabolites in breath, faeces and urine. In
addition, we found several associations between microbial metabolites
and dietary components (Supplementary Table 5) with notable inverse
correlations between the intake of dietary fibres and faecal BCFAs,
urinary PCS and urinary PAGIn, respectively.

Faecal and urine metabolomes are linked to transit time

and pH

To explore unknown metabolic features related to gut physiology, we
used untargeted metabolomicsto profile the urine and faecal metabo-
lomes. We applied univariate and multivariate statistical models on all
molecularfeaturesidentified inurine and faeces. We first used sparse
partial least squares (SPLS) models on the SmartPill-derived dataand
urine metabolomes from 24 h postprandial urine collected on day 2
and faecal metabolomes collected closest to the SmartPill egestion.
We then performed linear regression models on the same data and
further investigated features selected by both models (446 unique
features; Supplementary Table 6).

Several metabolic features in urine and faeces were associated
with whole-gut and segmental transit time and pH (Fig. 4a,b). To inves-
tigate these featuresin further detail, the corresponding samples were
analysed by tandem mass spectrometry (MS?) and by matching with
authentic standards when available, resulting in the identification of
33 metabolites (Supplementary Tables 7 and 8).

Apartfromurinary levels of PCS and PAGIn, several other urinary
metabolites derived from the breakdown of aromatic amino acids tryp-
tophanand tyrosine by gut microbes were found to be linked with gut
transit time and faecal pH. Specifically, 5-hydroxy-2-oxindole sulfate,
3-hydroxy-2-oxindole sulfate and 4-hydroxybenzoic acid sulfate were
associated withlonger WGTT/CTT, while 3-hydroxy-2-oxindole glucu-
ronide correlated with higher faecal pH. By contrast, faecal tryptophan
was negatively linked to faecal pH. In addition, higher faecal proline
and urinary picolinoylglycine levels were linked with increased faecal
andrectal pH, respectively.

Several dicarboxylic acids in faeces, pimelic, suberic and sebacic
acids were positively associated with WGTT and CTT. By contrast, faecal
glutaricacid and pipecolic acid were negatively correlated with WGTT/
CTT andsigmoid, rectal and faecal pH. Pipecolic acid is highly abundant
inplants; however, it can also be produced by the gut microbiota from
lysine®. Furthermore, higher urinary levels of citric acid were positively
associated with pHin the proximal colon.

Moreover, faecal levels of 2-oxindole-3-acetic acid, previously
linked to the New Nordic Diet and Mediterranean diet***, were nega-
tively associated with WGTT, CTT and faecal pH. Similarly, faecal pan-
tothenic and nicotinic acids were negatively associated with CTT and
faecal pH, respectively. In addition, dihydroferulic acid glucuronide
and argininic acid in urine were negatively associated with rectal pH,
while p-hydroxyphenyllactic acid in faeces was negatively linked to
faecal pH.

4-Hydroxyhippuric acid and several urinary markers of coffee
intake, including 1-methyluricacid, 1-methylxanthine, 1,3-dimethyluric
acid, 1,7-dimethyluric acid and 1,3,9-trimethyluric acid, were neg-
atively associated with small-intestinal pH. 1-Methylxanthine and
1,3,9-trimethyluric acid in faeces were also negatively associated with
WGTT or faecal pH, suggesting a link between coffee consumption
and gut function. In addition, a positive correlation was observed
betweenrectal pH and urinary 4-methylcatechol sulfate, ametabolite
of quercetin found in plant-based foods**. Urinary taurine and faecal
cholic acid were also positively associated with small-intestinal pH,
supporting the role of bile acids in neutralizing the acidic chyme com-
ing from the stomach®.

Finally, urinary pseudouridine, a primary constituent of RNA,
was found to be inversely associated with CTT and sigmoid colon
pH, in line with our previous work’. Pseudouridine was also found in
faeces and showed asimilarinverse relationship with faecal pH, as did
deoxy-xanthosine and xanthine. This suggests alink betweenincreased
cell turnover and lower colonic pH.

Altogether, by using untargeted LC-MS metabolomics, we identi-
fied several host-, microbial- and food-derived metabolites associated
with WGTT, CTT and pH in the distal part of the colon emphasizing
an interplay between diet, the gut environment, the host and the
microbiota.

Microbial alpha diversity is linked to long passage

To explore potential links between the identified metabolites and
the gut microbiota, Spearman correlation analysis was performed
(Fig.5). Strong positive correlations between microbial alpha diversity
measures and microbial proteolysis, CTT and ITT were found. On the
contrary, alpha diversity correlated negatively with stool moisture and
microbial saccharolysis.

Products of microbial proteolysis and dicarboxylic acids were posi-
tively correlated with the absolute abundances of several bacterial gen-
eraincluding/ntestimonas, Flavonifractor, Eubacterium, Lachnospira,
Clostridium, Oscillibacter, Alistipes, Dialister and Akkermansia. The
same genera negatively correlated with faecal levels of tryptophan,
oxindole-3-acetic acid and various coffee-derived metabolites. Not
surprisingly, these generawere also positively associated with longer
ITT and CTT and higher faecal pH, and negatively associated with
stool moisture and/or BSS. Conversely, SCFAs-producing genera
including Agathobacter, Faecalibacterium and Blautia®®*, along with
lactate-producing Streptococcus, were all positively associated with
faecalnicotinicacid, pantothenicacid and the coffee-derived metabo-
lites. Notably, Oscillibacter, Alistipes and Akkermansiahave repeatedly
been found elevated in samples linked to longer transit time and/
or constipation®>*, whereas butyrate-producing genera including
Faecalibacterium and Agathobacter have been associated with shorter
transit time?®*%, In summary, these observations highlight the inter-
dependency between gut bacteria, metabolites and gut physiology.

Discussion

Guttransittime and pH areimportant determinants of gut microbiota
composition and metabolism’. Here we showed substantial variation
inwhole-gut and segmental transit time, along with luminal pH among
healthy individuals. These variations explained differences in micro-
biome composition and host-microbiota co-metabolism. As pH and
transit time influence microbial growth and enzyme activities®, these
factors could play akey rolein shaping the gut microbial composition
and metabolism along the GIT as well as microbiome responses to
foods. A recent study confirmed that microbiome and metabolome
compositions differ along the GIT*°, Future studies with sampling along
the GIT combined with measurements of regional pH and transit time
areneeded to ultimately disentangle this. Our study emphasizes that
person-specific differences in the luminal pH may pose challenges for
studies using pH-sensitive ingestible devices***'. Itisworth noting that
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representing statistically significant associations (FDR-adjusted P < 0.1) in urine
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repeated measurementsin human studies are needed as we observed
substantial daily fluctuations in microbial-derived metabolites.

We identified several metabolites associated with longer transit
time that have been reported to be elevated in patient groups with
constipation***, Among these, dicarboxylic acids including pimelic
acid were associated with longer ITT and/or higher pH, and bacteria
consistently associated with constipation®***, Pimelic acid, possibly
originating from microbial fatty acid metabolism***¢, has been found
at higher faecal levels in patients with chronic kidney disease*” and
colorectal cancer*®, often associated with constipation***°. A recent
study showed an increased abundance of dicarboxylic acids towards
the distal gut*°, and the authors speculated that it could be due to
the catabolism of host epithelial cells. Whether longer ITT might be
associated withincreased epithelial cell turnover and shedding needs
further research.

Anegative association between daily fibre intake and several pro-
teolytic markers was also observed. As dietary fibres can regulate
microbial tryptophan metabolism®, availability of fibre in the colon
may affect microbial protein fermentation associated with negative
health outcomes™ ™. Further research is needed to understand these
mechanisms and to explore the relationship between gut physiology
and microbiome under controlled diets, possibly involving dietitians
or providing whole diets.

Despiteitslimited cohortsize, our study shows significant associa-
tions between intestinal segmental transit time and pHwithintra-and
inter-individual differences in the gut microbiome composition and
metabolismin a healthy population. Potential limitations to consider
are the choice of breakfast made before the SmartPill measurement;
given that past validation studies and their normative data rely on
specific meal/nutrient combinations®**?, any deviations from these
could likely influence gut motility and transit time. Furthermore, the
sweet-corn test is not a validated tool to assess WGTT despite being
cost effective. Finally, theintroduction of corn and the meals during the
firstvisit constitute small dietary changes, but they could possibly have
impacted gut physiology. While this study included a rather homog-
enous group of healthy volunteers, it provides valuable insights into
longitudinal variations in gut microbial metabolism and pH over more
than1week. Ourresults highlight theimportant role of transit time and
pHfor the gut microbiome composition and levels of microbial-derived
metabolites, emphasizing theimportance of considering gut physiol-
ogy and environment in human microbiome studies. This may be key
for understanding the healthy gut microbiome and for disentangling
personal microbiome responses to foods and other lifestyle factors.

Methods

Study participants

A9 day human observational trial (PRIMA, toward Personalized dietary
Recommendations based on the Interaction between diet, Microbiome
and Abiotic conditions in the gut) among healthy participants was
conducted at the Department of Nutrition, Exercise and Sports at the
University of Copenhagen in Denmark from April to December 2021.
Theresearch protocol was approved by the Municipal Ethical Commit-
tee of the Capital Region of Denmark (H-20074067), and all participants
provided written informed consent to participate according to Case
Report (CARE) guidelines and in compliance with the principles of the
Declaration of Helsinki. The study was registered at ClinicalTrails.gov
(IDNCT04804319).

Out of the initially anticipated 85 individuals, 63 healthy partici-
pants living in Denmark were enrolled, and 61 completed the study
(43womenand 18 men; Extended Data Fig.1). The two drop-outs were
excluded due toillness and antibiotic administration. Among the 61
study participants, a subset of 50 volunteers (37 women and 13 men)
underwent wireless motility capsule monitoring at visit 1as anticipated.
Volunteers were compensated with gift cards (500 or 800 DKK) but
received no direct financial compensation. The criteria for inclusion

inthe study specified for participants who were healthy by self-report
(did not suffer from inflammatory bowel syndrome, small-intestinal
overgrowth, inflammatory bowel disease, chronic orinfectious disease,
diabetes or cancer), ages 18-75 years old with a BMI between 18.5 and
29.9 kg m, with no intake of medication, except for mild antidepres-
sants and contraceptive pills. Intake of antibiotics, diarrhoeainhibitors
and laxatives 1 month before the trial was not allowed. Furthermore,
pregnant or lactating women were not included in the trial.

The PRIMA study was an explorative study. The primary outcome
was to investigate associations between faecal pH and gut microbial
saccharolytic/proteolytic metabolism (assessed by targeted and untar-
geted metabolomics). The secondary outcomes included to explore
relationships between the gut environmental factors (small-intestinal
and colonic pH and transit time assessed by wireless motility capsules
and various transit time proxy markers measured in faeces) and gut
microbiome and metabolome assessed by 16S rRNA sequencing and
metabolomics.

Experimental design and sample collection

Seven days before the study, the participants were asked not to con-
sume any sweet cornas two self-administered sweet-corn tests to evalu-
atethe WGTT were part of the study. Before both visits, the participants
were asked to abstain from alcohol intake, smoking and strenuous
exercise.

The participants were asked to maintain their habitual diet and
register their food intake online via the Myfood24 tool (myfood24.org)
withnutritional values based on the Danish food composition database
FRIDA version 4.1 (frida.fooddata.dk) for eight consecutive days during
the study. During the trial, the participants collected daily stool sam-
ples (first bowel movement whenever possible), stored the samplesin
their domestic freezers and transported them to the laboratory while
being kept cold. Moreover, the participants self-reported daily their
defecation patterns including time of defecations, stool consistency
assessed by the BSS and stool frequency, intake of dietary supplements
and medication (limited to pain killers for a few participants), and
their gastrointestinal symptoms. The gastrointestinal symptoms were
assessed based on a10 cm visual analogue scale (0, no symptoms; 10,
the most severe symptoms) in regard to stomach ache, bloating, con-
stipation, diarrhoea and overall comfort. Women were asked to note
down whether they had menstruation during the study period (yes/
no). Furthermore, the participants collected seven daily spot morning
urine samples (days1,2,4,5, 6,7, 8; the first morning sample) and two
24 h urine samples (days 2-3 and days 8-9) during the study period.
Thecollected urine samples were stored in the participants’domestic
freezers, transported to the study site in a cooling bag and stored at
-20 °C overnight. After thawing at 5 °C, aliquots of 1 ml were taken
and stored at —80 °C until further use. In addition, the participants
consumed 100 g of sweet corn before their evening meal on days 3 and
5and recorded the time of the corn egestion?.

At both visits (days 2 and 9), fasting blood and breath samples
were collected. During the first visit, anthropometric measurements
(height, body weight and BMI) were obtained. Furthermore, the first
visitalsoincluded astandardized meal test for all participants (n = 61).
The test meal consisted of rye bread (with butter and jam), a boiled
egg, aportion of natural yoghurt along with nuts, walnuts, blueberries
and a glass of water (100 ml) with 250 mg of dissolved paracetamol
(Table S1), which was used as a marker of postprandial gastricempty-
ing of liquids™. The meal portion size was calculated as 25% of the daily
energy demand of each participant based on the Harris-Benedict equa-
tion*. Postprandial urine samples (at 30 min, 60 min, 120 min, 180 min,
240 min, 300 min and 360 min and between 6 and 8 h, between 8 and
10 hand between 10 and 24 h) and postprandial breath exhalations (at
30 min, 60 min, 90 min, 120 min, 150 min, 180 min, 210 min, 240 min,
270 min, 300 min, 330 min and 360 min) were collected. A subset of
participants (n=50) ingested a SmartPill capsule immediately after
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the meal withabit of additional water if needed. All participants drank
150 ml of water at 2 hand 4 hafter the meal, respectively. At 6 h, all par-
ticipantsreceived asandwich and 500 ml of water and left the study site.

SmartPill data collection and analysis

The SmartPill capsule is a single-use wireless gastrointestinal capsule
(26.8 mm x 13 mm) that transmits data on luminal pH, temperature and
pressuretoaportablereceiver, which was worn by the participants from
ingestionto egestion and thereafter returned to the study personnel. The
capsule measures a pH range of 1-9, with an accuracy of 0.5 pH units,
pressure atarange of 0-350 mmHg (+5 mmHg) and temperature ranging
between 20 °Cand 40 °C (+1°C)*.Uponreceiving the portablereceiver,
the study personnel downloaded the raw data from the receiver to the
manufacturer’ssoftware viaadockingstation (Motility Glv3.1). Intestinal
segmental transit times were determined based onlandmark changesin
the pH values as follows: gastricemptying was defined as the time point
withanabruptincrease of >3 pH units indicating passage fromthe stom-
ach into the duodenum. The passage from the small intestine into the
ileocaecaljunction was defined as the first time point with adecrease of
atleastone pHunit. The body exit of the capsule was defined as the time
point with a decrease in temperature and/or a loss of data. The time of
capsuleresidenceineachof the gastrointestinal segments corresponds
to GET, small-intestinal transit time, CTT and combined WGTT. Regional
pHand pressure profiles were also obtained, and the median values were
determined. The segmental transit time and pH valuesin the colonwere
further segmented into proximal, distal and recto-sigmoid, respectively.
The proximal colon pH and transit time were estimated as median values
ofthefirst32.3% of thetotal CTT, the distal colon pH were median values
of the next 32.6% and the recto-sigmoid pH were median values of the
last 35.4%; this was based on previously reported data, which determined
the percentages of total CTT according to the location of radio-opaque
markers (visualized by X-rays) in the different segments of the colon™.
Inaddition, the median pH value measured during thelast 10 min before
the capsule egestion was registered as rectal pH.

Dietary records

Detailed 24 h weighted food intakes were recorded for 8 consecutive
days by the participants via the online Myfood24 tool (myfood24.org)
with nutritional values based on the Danish food composition database
FRIDA version 4.1 (frida.fooddata.dk). The collected data included
information about the intake of macronutrients (carbohydrate, pro-
tein, fat) and dietary fibre (AOACFIB), inaddition to information about
more than 80 nutrients. Under-reporting was identified by calculat-
ing the reported caloric intake divided by the average daily energy
demand for each person with a cut-offvalue of 0.8 (ref. 55). Accordingly,
approximately 25% of the daily dietary records were under-reported,
and the data were removed in the subsequent analyses in this study
(this essentially affected 10 participants who under-reported more
than 4 out of the 8 days, while the other participants occasionally
under-reported daily intakes). By contrast, no over-reporters (cut-off
>2.5) were detected. The total dietary profiles (allmacro- and micronu-
trients available in Myfood24) were used in the principal component
analysis, whereas macronutrient and fibre intake were used in the
redundancy analyses. The daily intake was used for intra-individual
analysis, whereas mean intake across the 8 days was used for the
inter-individual analysis.

Breath exhalations measurements

Fasting and postprandial levels of hydrogen and methane were meas-
ured in all breath samples by the M.E.C. Lactotest 202 Xtend device
(M.E.C.R&Dssprl).

Biochemical analysis of blood
Blood samples were immediately put onice upon collection until they
were centrifuged for precipitation of blood cells and stored at —80 °C.

Glucose was measured in plasma samples by using Pentra ABX 400
(HORIBA ABX) withadetection limit of 0.11 mmol ™. Seruminsulin and
C-peptide levels were measured by using Immulite 2000 XPi (Siemens
Healthcare Diagnostics) with the detection limit of 14.4 pmol I and
27 pmol I, respectively. Before the analyses, both instruments’ perfor-
mances were validated using external and internal insulin, c-peptide
and glucose controls. Three participants arrived for the second visit
ina postprandial state; the blood was collected and analysed accord-
ingly, but the glucose, insulin and c-peptide values were not included
inthe data analysis.

Faecal measurements

Uponreceipt, faecal samples were stored at —20 °C overnight, thawed
and homogenized in sterile water with a sample-to-water ratio of 1:1
(w/v) (faecalslurry). Subsequently, pH was measuredin the faecal slurry
using a digital pH meter (Mettler Toledo). The homogenized samples
were subsequently aliquoted to cryotubes and stored at —80 °C until
further analyses. Stool moisture was determined by evaporating the
water of one aliquot (approximately 1 ml) using a vacuum concentra-
tor (Speed-Vac, Christ RVC 2-25) and by calculating the faecal weight
difference before and after evaporation.

Faecal SCFAs and BCFAs were quantified by LC-MS in samples
collected between day 2 and day 5 (n = 170) as previously described*.
Inbrief, the samples were thawed, mixed with ethanol and purified by
filtration (0.2 um filter). Subsequently, the samples were derivatized
with 3-nitrophenylhydrazine, and labelled internal SCFA standards
were added. Dilution series of external SCFA standards were spiked
withinternal SCFA standards, and all derivatized samples were analysed
on ultra-performance liquid chromatography (UPLC)-quadrupole
time-of-flight mass spectrometry (QTOF-MS) (Synapt G2, Waters) in
negative ionization mode (cone voltage 3.0 kV) withan ACQUITY BEH
Cl18guard column (2.1 x 5 mm, 1.7 um, Waters) coupled toan ACQUITY
BEH C18 column (2.1 x 100 mm, 1.7 pm, Waters) and with collision
energy of 6.0 eV. The faecal concentrations of SCFAs and BCFAs were
determined using vendor software (Quanlynx, Waters).

Bacterial load in faeces was determined using approximately
500 pl of frozen faecal slurry (238-816 mg) and diluting it 400,000
times in physiological saline (8.5 g 1" NaCl; VWR International). Next,
1mlofthe microbial cell suspension obtained was stained with1 pl SYBR
Green 1 (1:100 dilution in dimethylsulfoxide; shaded during 20 min
incubation at37 °C;10,000 concentrate, Thermo Fisher Scientific). The
flow cytometry analysis of the bacterial cells present in the suspension
was performed using a Cytoflex flow cytometer (CytoFLEX 3; Beckman)
as previously described (Supplementary Fig. 3)**. The final microbial
load was calculated per gram of faeces.

Microbiome profiling

DNA was extracted in random order from the faecal slurries
(n=484) using DNeasy PowerLyzer PowerSoil kit (Qiagen, 12855-
100), and the V3 region of the 16S rRNA gene was PCR amplified
using 0.2 pl Phusion High-Fidelity DNA polymerase (ThermoFisher
Scientific, F-553L), 4 pl high-fidelity buffer, 0.4 pl ANTP (10 mM
of each base), 1 uM forward primer (primer binding upstream);
5’-A-adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’),
1M reverse primer (primer binding reverse); 5’-trP1-adapter-
ATTACCGCGGCTGCTGG-3’) and 0.05-5 ng faecal DNA in 20 pl total
reaction volume. Both primers (TAG Copenhagen A/S) were linked to
sequencing adaptors, and the forward primer additionally contained
a unique 10 bp barcode (lon Xpress Barcode Adapters) for each sam-
ple. The PCR program consisted of an initial denaturation for 30 s at
98 °C, followed by 24 cycles of 98 °C for 15s and 72 °C for 30 sand a
final extension at 72 °C for 5 min. The PCR products were purified by
the HighPrep PCR clean-up system (AC-60500 Magbio) according
to the manufacturer’s protocol. The resulting DNA concentrations
were determined by Qubit HS assay and libraries constructed with
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mixing equimolar amounts of each PCR product. Partial 16S rRNA
gene sequencing was performed on an lon S5 System (ThermoFisher
Scientific) using OneTouch 2 lon5: 520/530 kit-OT2400 bpand anlon
520 Chip. The raw datawere pre-processed into anamplicon sequence
variant (ASV) table using our in-house pipeline* based on the DADA2
algorithm and settings recommended for lonTorrent reads”, with
taxonomy assigned to the ASVs using the Ribosomal Database Project
(RDP, v18). Theresulting ASVtable, taxonomy and ASV sequences were
merged into a phyloseq object for further analysis. For quantitative
microbiome profiling analyses, the relative abundances derived from
the pre-processed 16S rRNA sequencing analysis were adjusted for the
bacterial loads as previously published*®. In brief, samples with <10,000
reads were removed (n =362) and downsized to even sampling depth,
defined asthe ratio between sample size (16S rRNA gene copy number
corrected sequencing depth) and bacterial load. 16S rRNA gene copy
numbers wereretrieved from the rRNA operon copy number database
rrnDB73 (ref. 59). The copy-number-corrected sequencing depth of
eachsample was rarefied to the level necessary to equate the minimum
observed sampling depth in the cohort while assuring a minimum
number of 10,000 reads in each sample and optimizing the chosen
sampling depth to exclude as few samples as possible. In case of no
copy number correction, an average copy number of 3.88 was used®.

Metabolic profiling

Preparation of urine and faecal samples. Untargeted urine and faecal
metabolomics were performed as previously published®. Allurine sam-
ples were thawed onice, centrifuged at 10,000 gat 4 °C for 2 min and
transferred to anew tube toremove solid particles. The urine samples
were kept cold on ice during preparation. Samples were randomized
and pipetted into 15 plates (96-well). All urine samples from the same
individual were placed on the same 96-well plate. Subsequently, they
were diluted to 1:5 with an internal standard mixture (L-adenine-8-C
(Cambridge Isotope Lab), L-phenyl-d5-alanine-2,3,3-d3 (Cambridge
Isotope Lab), caffeic acid *C, (Toronto Research Chemicals), caffeine
B¢, (Toronto Research Chemicals), L-tyrosine 2C, (Sigma Aldrich),
para-aminobenzoic acid (Sigma Aldrich), L-tryptophan-(indole-d;)
(SigmaAldrich), hippuricacid-[®C,] (IsoSciences), cortisone-d8 (Sigma
Aldrich) and glycocholicacid-[*H,] (IsoSciences)). Quality control (QC)
samples were obtained by mixing 20 pl of each urine sample in each
plate (plate pools) and by mixing 20 pl of each plate pool to create the
global pool. The QC samples, blank assays (0.1% formic acid) and mix-
tures of known standards (including 33 microbial-derived compounds)
were included in each plate. The plates were sealed and stored at 4 °C
until analysis (24 hmaximum, otherwise stored at—80 °C). If the plate
was frozen and thawed again before analysis, the plate was gently mixed
by vortex stirring for 30 minimmediately before analysis.

Faecal homogenates collected between day 2 and day 5 (n=170)
were thawed at room temperature for 30 min and vortexed. Approxi-
mately 50 +5 mg (=50 pl) of the homogenates were mixed with 96%
ethanol and internal standard mixture (L-adenine-8-C (Cambridge
Isotope Lab), L-phenyl-d5-alanine-2,3,3-d3 (Cambridge Isotope Lab),
caffeic acid ®*C, (Toronto Research Chemicals), caffeine *C, (Toronto
Research Chemicals), L-tyrosine C, (Sigma Aldrich), lysophosphati-
dylcholine (17:1d,) (Avanti Polar Lipids), L-tryptophan-(indole-d;)
(Sigma Aldrich), hippuricacid-[®C,] (IsoSciences), cortisone-d8 (Sigma
Aldrich) and glycocholic acid-[*H,] (IsoSciences)) resulting in a 1:60
dilution. The diluted samples were vortexed for 30 s and subsequently
mixed at 60 °Cfor2 minina Thermo mixerat1,400 r.p.m.,before being
centrifuged at20,000 g (Eppendorf centrifuge 5417R) at 4 °C for 2 min.
The supernatants were filtered through a 0.2 um filter, and 200 pl of
each faecal suspension was transferred to a 96-well plate, evaporated
using a cooled vacuum centrifuge and re-dissolved in 200 pl 0.1%
formic acid before the UPLC-MS. All faecal samples from the same
individual were placed on the same 96-well plate, and QC samples
were prepared in the same way as for the urine samples. In addition,

each 96-well plate contained blank assays (96% ethanol) and mixtures
of known standards (including 33 microbial-derived compounds).

UPLC-electrospray ionization-QTOF-MS analysis

Both urine and faecal samples were profiled by UPLC coupled with a
QTOF mass spectrometer equipped with electrospray ionization (Syn-
apt G2, Waters) in both positive and negative ionization modes*. Blank
samples (0.1% formic acid), assay blanks, standard mixtures and QC
samples wereinjected regularly to evaluate LC-MS system stability, pos-
sible contamination and/or loss of metabolites. The injected samples
(5 pl) wereseparated on areversed-phase column (ACQUITYHSS T3 C18
column, 2.1 x 100 mm, 1.8 um) coupled with a pre-column (ACQUITY
VanGuard HSS T3 C18 column, 2.1 x 5 mm, 1.8 pm). The mobile phases
consisted of 0.1% formic acid in water (solvent A) and 0.1% formicacidin
70:30 acetonitrile/methanol (solvent B). The duration of the analytical
runwas 7 minwith the following flow rate: start condition (0.5 ml min™),
1min (0.5mlmin™), 2 min (0.6 mImin™), 3 min (0.7 mI min™), 4 min
(0.8 mlmin™), 4.5 min (1.0 ml min™), 6.4 min (1.1 ml min™), 6.6 min
(1.0 mImin™), 6.8 min (0.5 ml min™), 7.0 min (0.5 ml min™), and the
following gradient: start condition (5% B), 1 min (8% B), 2 min (15%
B), 3 min (40% B), 4 min (70% B), 4.5 min (100% B), 6.6 min (5% B) and
7 min (5% B). Mass spectrometry data were acquired in full scan mode
with a scan range of 50-1,000 mass/charge (m/z). Data-dependent
acquisition was performed on the top three most abundant ions on
QC samples (only urine) to provide MS? data. Electrospray settings
were the following: the cone voltage was 2.5 kV and 3.2 kV; the colli-
sionenergy was 6.0 and 4.0 eV; and the temperature of theion source
and desolvation nitrogen gas temperature were 120 °C and 400 °C for
positive and negative ionization mode, respectively.

Metabolomics data processing

Theraw dataobtained by UPLC-MS were converted to mzML format by
publicly available msConvert (ProteoWizard Toolkit)®°. The converted
datawere pre-processed using the open-source R package XCMS (v3.18)
using the centWave algorithm (requiring three consecutive scans with
an intensity of over ten counts)®’. The pre-processing steps included
noise filtering, peak picking, retention time alignment and feature
grouping across samples, and filling of missing features, which were
doneseparately for the urine and faecal samples (and for positive and
negative mode), respectively. The detailed pre-processing param-
eter settings can be found in Supplementary Table 9. Noise filtering
settings included that features should be detected in a minimum of
10% of all samples. Features with a retention time below 0.5 min or
above 6.8 minwere excluded. Data tables were generated comprising
mass-to-chargeratio (m/z), retention time (rt) and intensity (peak area)
foreachvariablein every sample. Each detected peakis represented by
afeature defined by artandamy/z. The obtained datawere corrected for
within- and between-batch intensity drift using the locally estimated
scatterplot smoothing correction method®’. The processed data were
normalized by the probabilistic quotient normalization®® method to
correct for variations in urine and faecal concentrations within and
between batches. Upon analyses of 15 plates with urine samples, QC
samples clustered closely together in the principal component analy-
sis score plots, confirming a stable UPLC system during the course of
analysis with the exception of two plates in the negative mode and
oneplateinthe positive mode, which had to be removed from further
statistical analyses (Supplementary Fig. 4).

Moreover, features with high variability after normalization
across the pooled QC samples were filtered out (coefficient of vari-
ation, CV% >50%). Finally, the CAMERA package®* (v1.52) was used to
group features together based on retention time (tolerance = 0.1s)
and to annotate possible adducts and isotopes. Upon pre-processing,
641 and 651 molecular features were detected in the urine in posi-
tive and negative modes, respectively, whereas 453 and 445 molecu-
lar features were detected in faeces in positive and negative modes,
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respectively. MzMine 3 (ref. 65) and MassLynx (Waters) were used for
datavisualization.

Metabolite identification and structure elucidation
MS?analyses were performed by an ultra-high performance LC system
coupledtoaVionIMS QTOF mass spectrometer (Waters) for obtaining
spectra with higher mass accuracy. The samples were separated on a
reversed-phase column (ACQUITY HSS T3 C18 column, 2.1 x 100 mm,
1.8 um) coupled with a pre-column (ACQUITY VanGuard HSS T3 C18
column, 2.1 x5 mm, 1.8 pm) at a temperature of 50 °C. The mobile
phases consisted of 0.1% formic acid in water (solvent A), methanol
(solvent B), 0.1% formic acid in 70:30 acetonitrile/methanol (solvent
C)andisopropanol (solvent D). The duration of the analytical runwas
10 min with the following flow rate: start condition (0.4 ml min™),
0.75min (0.4 ml min™), 6 min (0.5 mI min™), 6.5 min (0.5 mI min™),
8 min (0.6 ml min™), 8.1 min (0.4 ml min™), 9 min (0.4 mlmin™),10 min
(0.4 mlmin™), and the following gradient: start condition (100% A),
0.75min (100% A), 6 min (100% B), 6.5 min (70% C, 30% D), 8 min (70%
C,30% D), 8.1min (70% C, 30% D), 9 min (100% A) and 10 min (100%
A). Full scan acquisition was performed on selected urine samples
with a scan range of 50-1,500 m/z. Data-dependent acquisition was
performed on a selected list of precursors at three different collision
dissociation energies, 10,30 and 50 eV.

Mass spectra were manually interpreted, and metabolites were
identified by matching the precursor ion and fragmentation patterns
with databases such as Human Metabolome Database (https://hmdb.
ca/), Metlin (https://metlin.scripps.edu/), mzCloud (https://www.
mzcloud.org/), combinatorial database of bile acid conjugates®®
(http://melolab.org/smilib/) and an in-house database (https://
gitlab.com/stanstrup_R_packages/mscurate and https://gitlab.com/
stanstrup_R_packages/xcms-annotator). In addition, we used several
software annotations including GNPS (v30)® (https://gnps.ucsd.edu/),
microbeMASST (v2024.08.26)° (https://masst.gnps2.org/microbe-
masst/) and SIRIUS (v6.0.5)%° (https://bio.informatik.uni-jena.de/
software/sirius/), without obtaining additional plausible matches.
Furthermore, authentic standards were run together with the samples
with the highest intensity on the same batch and platform. If needed,
the authentic standards were sulfated or glucuronidated with either
biomimetic synthesis’ or chemical synthesis®. The identification
level of metabolites that were identified was classified according to
Sumner et al.” as level I (confirmed by matching to a standard with
two orthogonal measures (rt, m/z), level Il (matching MS? fragmen-
tation to a spectral library), level Ill (compound classification) or
level IV (unknown)?®. See Supplementary Tables 7 and 8 for further
details. 3-Hydroxy-2-oxindole, 5-hydroxyoxindole, 2-picolinic acid,
4-methylcatechol, xanthine, 2-oxindole-3-acetic acid, pantothenic
acid, nicotinicacid, tryptophan, sebacic acid, pipecolic acid, glutaric
acid, citricacid, psedouridine, taurine, 1,3-dimethyluric acid, suberic
acidand1,3,7-trimethyluric acid were purchased from Sigma-Aldrich.
4-Hydroxyhippuricacid, 1-methylxanthine and 1-methyluric acid were
purchased from Toronto Research Chemicals.

Statistical analysis

Statistical analyses were conducted in R (v 4.2). The area under the
curves for hydrogen and methane concentrations during the post-
prandial period was calculated using the trapezoid rule in GraphPad
Prism (v 9.2.0). The normality of data was assessed with the Gaussian
distribution and Shapiro-Wilk test procedure.

Mixed-effects linear regression models were used to exam-
ine the day-to-day fluctuations and inter-individual variation in
gut environmental factors using data from all 9 days. The mod-
els were generated using the /me4 R package (v 1.1-31) as Imer (gut
environmental factor ~ factor(day) + (1| Participant ID)); moreover,
ranova function from the ImerTest package (v 3.1-3) was used to
perform the random effects-likelihood ratio tests to infer whether

Participant ID significantly contributes to explaining the variation
in the gut environmental factors. P value of < 0.05 was considered
statistically significant. Coefficients of intra-individual variation
were calculated as CV ,, = (5.d.;nea/Mean;,,) X 100 where mean and
s.d. were based on all measurements from a single individual over
the 9 days.

Gut microbiome beta-diversity analysis using Bray—Curtis dis-
tances as well as metabolome and diet beta-diversity analyses using
Euclidian distances were performed with the phyloseq package
(v1.42.0) and PERMANOVA tests by adonis2 function from the vegan
package (v2.6) with 999 permutations and strata = Participant ID when
testing the day-to-day fluctuations.

Single time point correlations were calculated using standard
Spearman’s rank correlation, as implemented in the Hmisc R pack-
age (v 4.7), and heat maps were generated by the corrplot package
(v0.92). Repeated measure correlations were performed using the
rmcorr (v 0.5)7%.

db-RDA was performed to quantify the effect sizes of gut envi-
ronmental factors and other variables on the intra-individual and
inter-individual variation in the gut microbiome (both relative and
quantitative profiles at genus level) and faecal and urine metabolomes
(untargeted data, all features). The analyses were performed with
Bray-Curtis dissimilarity using the capscalefunction asimplemented
inthe vegan package (v2.6). Withregards tointra-individual analyses,
dataavailable fromall samples (day 1to day 9) and strata = Participant
ID were used. For the inter-individual analyses, data collected on day
2 (visit 1) were used separately for all participants (n = 61) and for the
SmartPill subgroup (n =50). The statistical significance was deter-
mined by permutation test with 9,999 random permutations (anova.
ccafunction), and Pvalues were adjusted for multiple testing by false
discovery rate (Benjamin-Hochberg)”. An adjusted P value (g value)
below 0.1 was considered significant.

For the untargeted metabolomics data, the area of each m/z
feature was log-transformed, and missing values were imputed and
replaced by values reflecting half of the minimum intensity of the
given m/z feature. Linear regression models and SPLS models were
performed to examine the relationship between the m/z features
and the variables of interest (that is, segmental transit time and pH).
The modelling was performed using the SmartPill-derived data and
the 24 h postprandial urine metabolome collected at day 2 as well as
the faecal metabolome closest to the time of the SmartPill egestion.
The linear mixed models were performed with the /me4 R package
(v1.1-31). The multivariate SPLS models were performed with the caret
R package (v 6.0-92). P values were corrected for multiple testing by
the Benjamin-Hochberg false discovery rate (g value). Features with
g < 0.1were considered to be statistically significant, and only features
selected by both thelinear regression and SPLS were further submitted
foridentification including the MS?.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All sequencing data have been submitted to the National Center for
Biotechnology Information Sequence Read Archive. BioProject ID,
PRJNA1044006. MS? data of global urine and faecal pool samples are
deposited at MassIVE MSV000095466. Individual-level personally
identifiable MS? data from the participants cannot be made freely
available to protect the privacy of the participants, inaccordance with
the Danish Data Protection Act and European Regulation 2016/679
of the European Parliament and of the council (GDPR) that prohibits
open distribution even in pseudoanonymized form. Metabolomics
data and data tables can be shared upon request. For data inquiries,
please contact the principal investigator, H.M.R., viaemail. Access will
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be evaluated and granted upon signing a data processing agreement
between the governing legal entities. Source data are provided with

this paper.

Code availability
No custom code was generated for this work.
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Extended Data Fig.1| CONSORT flow diagram of the PRIMA study. This diagram llustrates the flow of participants through each stage of the PRIMA study, including
enrollment, allocation, visit 1and visit 2, and analysis.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-024-01856-x

,‘ 3
N\

~

\
]
EY

.

22 1 23 [ 24 I 25 [ 26 1 27 I [ 28 |

1000

@
3
3

PC2 [13.3%]

&

&

25
"

e 9
4

_ 54

i
3
)
I
L]
A

-1000

20 ][ 30 ][ 31 1 32 1 33 1 34 1 35 |

w
%

43 ][ 44 ][ 45 ][ 46 ] 47 ][ 48 1 49

-1000 -500 0 500 -1000 -500 0 500 -1000 -500 0 500 -1000 -500 0 500 -1000 -500 0 500 -1000 -500 0 500 -1000 -500 0 500
PC1 [59%]

0.50
0.25 -
0.00 g ; .
025 e : o
2050

050 e
025 s, o%
0.00 b B,

-0.25 o] T
-0.50

050
025 - 2

0.00 ) =
e . ; $,
0.50

25 [ 26 I 27 I [ 28 ][ 29 1 30 I [ 31 1 32 |

050 . RN .7
025 ; 3

1

o
2
8

025 - b '
-0.50 e

33 [ 34 1 35 I [ 36 ][ 37 1 38 ][ 39 1 40 |

0.50
0.25 Oy

%,
0.00 » s, e
oo d i S#ve
-0.50

Axis.2 [14.4%]

0.50
0.25
0.00
-0.25
-0.50

49 I [ 50 | I 51 ] [ 52 | | 53 | [ 54 ] [ 55 ] | 56

0.50
0.25
0.00
025
-0.50

57 Il 58 Il 59 I 50 I o1 05 00 05 05 00 05

050
025
0.00
025 .
-0.50 e
05 00 05 05 00 05 05 00 05 05 00 05 05 00 05
AxisA [17.1%]

Extended Data Fig. 2| Individual microbiome and metabolome profiles. (a) Individual Bray Curtis B-diversity ordination of quantitative faecal microbiome profiles
over 9 study days (n = 61) (b) Euclidian B-diversity ordination of urinary metabolomes profiles over 9 study days (n =49, 12 individuals were removed due to LC-MS
batch effect).

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-024-01856-x

A B
Relative microbiome profiles | Faecal metabolome I
4 4
*
£3{29% T3
< N =
8 2.1% S
@ 2 . @ 2
- o, - %
é L% 1.4% 1.3% 1.2% é L3 1.5% 1.3%
w1 0.8% ¢ 79 w1
. i 0.5% 0.5%
, Has
o> S @ Wy @ £ > g
\O{D&Qo‘@’\,é\&@é}QQﬁé\O@@
LT & & §
& @ > & (\b@ F &
& & K
&\@
C :
Gastric . . . . :
: Small intestinal transit Colonic transit
transit
1 1
i SmartPill® ; A
1 £ = 1 . P
i @@ i Bodly exit ||»
1 = 1 +
i ! Ileocaecal
1 . . =
. ! ' junction
Ingestion | >
/ | = B
|
| |
inlsX*
; ; 10min rs 5
i i Rectal
1 -
'€ 32% 33%_ .y <...32%. .
; ' Proximal Distal Sigmoid ~ |:
Gastric i
. ! b
emptying !
1 2
1
i
1 1
1
1
1
1
T T Ir T T T T T T L T T T T T T T T T -0
0:00 224 4:48 712 936 . 12:00 . 1424 16:47 19:12 21:35 2413
Time (h:min)
Extended DataFig. 3 | Intra-individual variations in faecal microbiome and the SmartPill. Segmental transit times were determined based on pH changes
metabolome, and an example of a SmartPill profile. Contributions of dietary upon gastricemptying, ileocaecal junction and body exit as indicated. The
and gut factors on intra-individual variationsin (a) relative microbiome proximal-, distal-, and sigmoid-colon pH were determined as median valuesin
profiles and (b) faecal metabolome. The analysis was performed with distance- each of the segments of the colon based on an approximation of the transit time
based redundancy analysis (db-RDA) with permutation test on daily relative based on previous data showing that the first 32% followed by 33 % and 35 % of
microbiome data (n = 61,9 days) and untargeted faecal metabolome data (n = 61, CTT corresponds to the proximal, distal, and sigmoid colon, respectively. In
3 days). The asterisks indicate statistical significance after adjustment for addition, the median pH of 10 min before the capsule egestion was registered as
multiple testing (*q-value < 0.05). (c) An example of a pH profile measured by rectal pH.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-024-01856-x

A S e o
N &
NG S RG X <
<& < & & F N SOOI
R ,<\ A S N \é‘ o Q> & Q o > >
& F O S o o @ S g
OIS NS R MR- R SN EC - SR G- LR SR SO SR> ;
SBT
CTT
0.85
SBT+CTT
WGTT 0.7
Corn TT
0.55
Bristol scale
Stool frequency
- 04
Stool moisture
Microbial load F 025
SB pH
F 01
Proximal pH‘ £
Distal pH
F -0.05
Sigmoid pH'
Rectal pH L o2
Faecal pH
Age - -035
BMI
. 05
* . ns .
60 60
. .
* .
S £
[}
§4o . 540
g g *
© o
s 5
8 S
9., . o
20
:
0

Men Women

Gender
Extended Data Fig. 4 | Correlations between various factors assessed in the
trial, and sex differences in colonic transit time. (a) Spearman correlation
analysis between segmental transit times assessed by the SmartPill, corn
transit time, various proxy markers of transit time, gut factors, and subject
characteristics. The colour gradient shows the Spearman correlation coefficient
and the asterisks indicate statistical significance (****q < 0.001,***q < 0.01,

Menstruation

**q<0.05,*q < 0.1). SBT; small bowel transit time, CTT; colonic transit time,
WGTT; whole gut transit time). Differences in colonic transit time according to
(b) gender and (c) menstruation (only women, n = 43). Wilcoxon test; two-sided
*p <0.05, boxplot center represents median and box interquartile range (IQR).
Whiskers extend to most extreme data point <1.51QR.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-024-01856-x

r=-0.12, p=0.05

4e+05  6e+05

Phenylacetylglutamine [M-H]-

2e+05

30 40 50 60 70 80 90

Stool moisture %

r =-0.66, p<0.01
g %
S L s
& ~<
~
g 5
=
2
i
g R
o 4
T T T
6.0 6.5 7.0
Faecal pH
Q
< =
o |r=-043,p<001
e 4
€ o~
2 o N
S ~<
£ o | -~
:- o
T ow
8 -
©
> o
v
e .
T T T
6.0 6.5 7.0
Faecal pH
. | r=-043,p<001
o

2-methylbutyrate umol/g faeces

Stool moisture %

Indole-lactic acid [M-H]-

Propionate umol/g faeces

Fasting breath CH4 (ppm)

i .
r=0.13, p=0.03
)
s
<]
«
g |
N o .
8
3
o
T T T T
0.0e+00 5.0e+10 1.0e+11 1.5e+11 2.0e+11
Microbial load (cells/g faeces)
]
r=-0.41, p<0.01
B .
o
o J - <
.
o 4
T T T
6.0 6.5 7.0
Faecal pH
~ .
r =-0.43, p<0.01
©
8
§
8
2 « 4 ¢
]
€
£
2 ©
H
& o
S ~—
© S
o .
T T T
6.0 6.5 7.0
Faecal pH
2 {r =-0.62, p<0.01
.
.
2
.
2
. . e
.
S S .
o o &Q \.k:Q. g R -
T

T T T
60 70 80 90

Stool moisture %

s |r=0.12, p=0.04
8 4
~ 3 .
T 2
E [=]
i<}
s 3
s 7
iz
9 87
(=3 [}
o 4
Faecal pH
©
r =-0.77, p<0.01
w
@
3 ~
§ <4 -
o W
°
£ © 4
E
2
a
o 4
T T T
6.0 6.5 7.0
Faecal pH
T
r =-0.39, p=0.01
o~
g 21
& o |
& - .
3w °
£ o
£
L2 o
g o 7
=
32 < |
g o
~ .
4 ~
T T T T
60 70 80 90
Stool moisture %
. [r=042, p<0.01"
g -

Phenyllactic acid [M-H]-
40
I

5.0e+10

Microbial load (cells/g faeces)

Extended Data Fig. 5| Repeated measures correlation between gut factors and microbial metabolites. The colour lines show the individual correlation between
each pair of tested variables for each of the study days using data from all 61 participants. The grey dashed lines, the correlation coefficients (r) and the p values

indicate the overall trends.

Nature Microbiology


http://www.nature.com/naturemicrobiology

nature portfolio

Corresponding author(s):  Henrik Munch Roager

Last updated by author(s): Oct 8, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
S~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX 00 0000 01 ol

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Motility Gl software (v 3.1) was used to download and analyse data from the SmartPill receiver
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(v4.2,Waters) were used for data visualization. Quantification of faecal short-chain fatty acids was performed by QuantLynx (v4.2, Waters).
Statistical analysis and pre-processing of untargeted metabolomics data was performed using R(v4.0.2), RStudio(v1.3), and GraphPad Prism
(v9.2.0). The following R packages were used: caret(v6.0.92), vegan(v2.6), Ime4(1.1.31), phyloseq(v1.42.0), tidyverse(v1.3.0), XCMS(v3.18),
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All sequencing data have been submitted to the NCBI Sequence Read Archive (SRA). BioProject ID: PRINA1027590.

MS/MS data of global urine and faecal pool samples are deposited at MassIVE MSV000095466. Individual-level personally identifiable MS/MS data from the subjects
cannot be made freely available, to protect the privacy of the participants, in accordance with the Danish Data Protection Act and European Regulation 2016/679 of
the European Parliament and of the Council (GDPR) that prohibit open distribution even in pseudoanonymised form. Metabolomics data and data tables can be
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signing a Data Processing Agreement between the governing legal entities.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender 43 women and 18 men participated in the PRIMA study. The biological sex was assigned during the screening visit.

Reporting on race, ethnicity, or | Race and ethnicity were not considered when designing the PRIMA study or consenting participants for the study.
other socially relevant
groupings

Population characteristics Sixty-three healthy participants living in Denmark were enrolled and 61 completed the study (43 women and 18 men).
Participants were healthy by self-report (did not suffer from inflammatory bowel syndrome, small intestinal overgrowth,
inflammatory bowel disease, chronic or infections disease, diabetes or cancer), aged 18-75 years with a BMI between 18.5
and 30.0 kg/m2 with no intake of medication with the exception of mild antidepressants and contraceptive pills. Intake of
antibiotics, diarrhoea inhibitors and laxatives one month prior to the trial was not allowed. Furthermore, pregnant or
lactating women were not included in the trial.

Recruitment Participants were recruited via social media, internet (www.forsggsperson.dk, www.nexs.ku.dk) and flyers distributed at the
Department of Nutrition, Exercise and Sports at the University of Copenhagen. One potential source of bias in this study is
self-selection, as participants were volunteers likely to be more interested in science and health, potentially skewing the
sample towards a higher socioeconomic class. This could impact the results by over-representing health-conscious behaviors,
such as diet and lifestyle, which may not reflect the broader population. As a result, the findings may have limited
generalizability to individuals from diverse socioeconomic backgrounds.

Ethics oversight The PRIMA study was approved by the Municipal Ethical Committee of the Capital Region of Denmark (H-20074067) and all
participants provided written informed consent to participation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample size. Based on a previous study investigating the effect of colonic transit time on
the human gut microbiome and urine metabolome, similar sample size was sufficient to obtain statistical power to identify associations
between intestinal transit time, the faecal microbiome and metabolome (doi: 10.1038/nmicrobiol.2016.93).

Data exclusions  Microbiome profilling: 123 samples were removed due to low read number (< 10 000 reads).
Urine metabolome: samples from 12 individuals were removed due to batch effect on the LC-MS
SmartPill data: Gastric emptying times exceeding 8h and the corresponding whole gut transit times were excluded from the analyses.

Replication Our study was an observational study and no replication was performed.

Randomization No randomisation was performed as the study was observational.
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Blinding No blinding was performed as the study was observational.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  https://www.clinicaltrials.gov/study/NCT04804319

Study protocol The study protocol can be found in the Supplementary Data.
Data collection The recruitment and data collection were carried out between April 2021 and December 2021.
Qutcomes The PRIMA study was an explorative study. The primary outcome was to investigate associations between faecal pH and gut

microbial saccharolytic/proteolytic metabolism (assessed by targeted and untargeted metabolomics). The secondary outcomes
included to explore relationships between the gut environmental factors (small intestinal and colonic pH and transit time assessed by
wireless motility capsules, and various transit time proxy markers measured in faeces) and gut microbiome and metabolome
assessed by 16s rRNA sequencing and metabolomics.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-atthentication-procedtres foreach seed stock- tised-ornovel-genotype generated—Describe-any-experiments-tised-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.




Methodology

Sample preparation Bacterial load in faeces was determined using approximately 500 pL of frozen faecal slurry (238 — 816 mg) and diluting it
400,000 times in physiological solution (8.5 g/L NaCl; VWR International). Next, 1 ml of the microbial cell suspension obtained
was stained with 1 uL SYBR Green | (1:100 dilution in dimethylsulfoxide; shaded 20 min incubation at 37 °C; 10,000
concentrate, Thermo Fisher Scientific).

Instrument The flow cytometry analysis of the bacterial cells present in the suspension was performed using a Cytoflex flow cytometer
(CytoFLEX S; Beckman)

Software CytExpert Software (Beckman)
Cell population abundance n/a; In this study, total microbial cells present within fecal samples were measured. No subpopulations were assessed.
Gating strategy Fluorescence events were measured using fluorescence channels FITC 525/40 nm combining with Side Scatter Channel SSC-

A. In addition, backward gating at FSC-A combining SSC-A dot plot, FICT histogram plot and FITC combining PerCP dot plot
was applied to double check the distribution of detected cells. Instrument and gating settings were identical for all samples
(fixed staining—gating strategy).
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Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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