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Abstract

A detailed understanding of molecular responses to a hypertrophic
stimulus in skeletal muscle leads to therapeutic advances aimed at
promoting muscle mass. To decode the molecular factors regulat-
ing skeletal muscle mass, we utilized a 24-h time course of human
muscle biopsies after a bout of resistance exercise. Our findings
indicate: (1) the DNA methylome response at 30 min corresponds
to upregulated genes at 3 h, (2) a burst of translation- and
transcription-initiation factor-coding transcripts occurs between 3
and 8 h, (3) changes to global protein-coding gene expression
peaks at 8 h, (4) ribosome-related genes dominate the mRNA
landscape between 8 and 24 h, (5) methylation-regulated MYC is a
highly influential transcription factor throughout recovery. To test
whether MYC is sufficient for hypertrophy, we periodically pulse
MYC in skeletal muscle over 4 weeks. Transient MYC increases
muscle mass and fiber size in the soleus of adult mice. We present
a temporally resolved resource for understanding molecular
adaptations to resistance exercise in muscle (http://
data.myoanalytics.com) and suggest that controlled MYC doses
influence the exercise-related hypertrophic transcriptional
landscape.
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Introduction

Molecular alterations after a bout of exercise in skeletal muscle
precede hypertrophic adaptation and ultimately contribute to a
change in phenotype (Egan et al, 2013; Egan and Sharples, 2022;
Gustafsson et al, 1999; Jozsi et al, 2000; Kraniou et al, 2000; Perry
et al, 2010; Pilegaard et al, 2000). Initial time course work
in humans that used ≥3 post-exercise muscle biopsies established
2-4 h into recovery as the ideal time point for studying targeted
changes in mRNA levels after a bout of exercise (Louis et al, 2007;
Pilegaard et al, 2003; Vissing et al, 2005; Yang et al, 2005). Others
that leveraged more comprehensive profiling of global gene
expression (Mahoney et al, 2005; Neubauer et al, 2014; Zambon
et al, 2003) demonstrated that many genes have delayed and/or
biphasic responses to exercise in muscle that extend beyond 4 h.
Recent work in skeletal muscle further emphasizes that gene
expression data from a single time point after exercise is limiting
when trying to capture the complex and dynamic nature of the
adaptive response, and could even lead to inaccurate or misleading
conclusions (Kuang et al, 2022). It is also important to consider the
effects of the muscle biopsy (Vissing et al, 2005) and circadian
rhythm (Zambon et al, 2003) in human exercise studies; these
factors are typically overlooked. There is a critical need for
temporally resolved and biopsy-only controlled investigations to
explore and understand the molecular responses to resistance
exercise since muscle mass and function is strongly associated with
all-cause mortality (Isoyama et al, 2014; Li et al, 2018; Metter et al,
2002; Newman et al, 2006). A detailed understanding of the most
influential molecular factors during the post-resistance exercise
recovery period will help focus efforts at developing targeted
therapies against muscle mass loss and/or enhancing hypertrophic
responsiveness to exercise interventions.
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Several seminal (Alway, 1997; Armstrong and Esser, 2005; Chen
et al, 2002) and recent studies (Murach et al, 2022; Viggars et al,
2022a) suggest that the transcription factor c-Myc (referred to as
Myc or MYC for mouse and human genes, respectively) is a key
component of skeletal muscle hypertrophic adaptation to loading in
animals. Our work using human skeletal muscle biopsies after a
bout of resistance exercise (RE) (Figueiredo et al, 2021), as well as
meta-analytical information that combines numerous human
muscle gene expression datasets during the recovery period after
exercise (Pillon et al, 2020), indicates that MYC is highly responsive
to hypertrophic loading (Jones et al, 2022). MYC protein
accumulates in human muscle following a bout of RE (Broholm
et al, 2011; Brook et al, 2016; Figueiredo et al, 2016; Townsend et al,
2016) as well as in response to chronic training (Stec et al, 2016). Its
expression may also differentiate between low and high hyper-
trophic responders (Stec et al, 2016). Myc is induced cell-
autonomously in myotubes by electrical stimulation in vitro
(Sidorenko et al, 2018) and is strongly upregulated in murine
myonuclei during mechanical overload (Murach et al, 2022). MYC
protein localizes to myonuclei during loading-induced hypertrophy
(Alway, 1997; Armstrong and Esser, 2005), is considered pro-
anabolic (Dang, 1999, 2012; Das et al, 2022), and can drive muscle
protein synthesis and ribosome biogenesis in skeletal muscle
(Brook et al, 2016; Mori et al, 2020; Wen et al, 2016; West et al,
2016). Loss of MYC results in lower muscle mass in preclinical
models (Demontis and Perrimon, 2009; Wang et al, 2023). MYC is
also estimated to target ~15% of the genome across different tissues
and species (Dang et al, 2006). Still, the magnitude of its
contribution to the exercise response in humans is not entirely
understood (Phillips et al, 2013), nor is its sufficiency for muscle
hypertrophy in preclinical models.

The current investigation details the global gene expression
response to a bout of RE after 30min, 3-, 8-, and 24-h using RNA-
sequencing (RNA-seq) in skeletal muscle biopsy samples from healthy
untrained humans. We reveal the effect of the muscle biopsy and
inherent circadian rhythmicity using a biopsy-only, feeding and time
point-matched control group. The human transcriptional time course
data is provided in a publicly available user-friendly web-based
application at http://data.myoanalytics.com. We then analyzed the
humanmuscle methylome at 30min after RE and combined these data
with the transcriptome response to RE using a novel -omics
integration approach. Integration of methylomics and transcriptomics
sheds light on the molecular regulation of gene expression during
recovery from exercise. With our transcriptome data, we infer the
major transcriptional regulators of the exercise response using in silico
ChIP-seq (Qin et al, 2020) that we have previously validated in skeletal
muscle with a genetically modified mouse (Jones et al, 2022; Murach
et al, 2022). These molecular and computational analyses identified
MYC as an influential transcription factor controlling the exercise
transcriptome throughout the time course of recovery after a bout of
RE. Muscle-specific Myc overexpression data from the plantaris
(Murach et al, 2022) and soleus (Jones et al, 2022) of mice reinforced
the human exercise data. We employed a genetically modified mouse
model to induce MYC in a pulsatile fashion specifically in skeletal
muscle over 4 weeks to determine if MYC is sufficient for hypertrophy.
Our genetically driven pulsatile approach avoids potential negative
effects of chronically overexpressing a hypertrophic regulator (Castets
et al, 2013; Ham et al, 2020) and more closely mimics the transient
molecular response of exercise in skeletal muscle (Egan et al, 2013;

Egan and Sharples, 2022; Perry et al, 2010; Smith et al, 2023). This
work collectively illustrates the molecular landscape with temporal
resolution after a bout of RE and places MYC at the center of the
skeletal muscle RE response in mice and humans.

Results

Biopsy time course at rest and the transcriptional
regulation of circadian genes in human skeletal muscle

For the analysis of RNA-seq data, we focused on protein-coding
genes as they are the most well-characterized. The results of these
mRNAs are presented in Dataset EV1 and EV2. The Pre muscle
biopsies were taken 15 min prior to the 45-min control protocol
(equivalent to the 45 min of resistance exercise in RE group;
Figs. 1A and 2A). Thus, in practice, the biopsy named 30 min post
is taken 90 min after the Pre biopsy (15 min plus, 45 min, plus
30 min), the biopsy named 3 h is taken 4 h after the Pre biopsy, and
so on. The biopsy time points, and their naming are chosen to
precisely correspond to the post RE time points for the RE group
(Fig. 2A). The first muscle biopsies were obtained within a 3.5 h
window beginning at 7:30 AM for all participants in the study.

Differentially expressed genes (DEGs, adj. p < 0.05) were
analyzed relative to the collected Pre biopsy. In the control group
(CON, n = 5) the number of DEGs at the different recovery time
points was: 30 min—0 upregulated, 1 downregulated; 3 h—12
upregulated, 30 downregulated; 8 h—55 upregulated, 75 down-
regulated; and 24 h—0 upregulated, 1 downregulated (Fig. 1B,D).
Thus, the most protein-coding DEGs were observed at 8 h relative
to Pre. Previous work involving human skeletal muscle biopsies
revealed the rhythmic expression of muscle circadian core clock
genes over 24 h (Perrin et al, 2018). We found that NR1D1
(REVERBα) (adj. p = 0.01 × 10−5), PER1 (adj. p = 0.0008), and PER2
(adj. p = 0.007 × 10−6) were lower at the 3-h time point (Fig. 1C). At
8 h, NR1D2 (REVERBβ) (adj. p = 0.005), PER1 (adj. p = 0.03 × 10−6),
PER2 (adj. p = 0.007 × 10−10), and PER3 (adj. p = 0.007 × 10−3) were
lower, while ARNTL, also known as BMAL1, was upregulated (adj.
p = 0.01) (Fig. 1C). KLF15, a circadian-regulated mediator of lipid
metabolism (Perrin et al, 2018), was lower at the 3-h (adj.
p = 0.0001) and 8-h time points (adj. p = 0.03 × 10−12) in the CON
group (Fig. 1C). PPARGC1β, another circadian-controlled gene
(Gidlund et al, 2015; McCarthy et al, 2007), was upregulated at 3 h
(adj. p = 0.048) and 8 h (adj. p = 0.01; Fig. 1C). Also worth
mentioning is that FOXO3, a central regulator of autophagy and
mass in skeletal muscle (Mammucari et al, 2007; Sandri et al, 2006;
Zhao et al, 2007), was lower at 3 h (adj. p = 0.0004) and 8 h (adj.
p = 0.007 × 10−3, Fig. 1C). SESN1, which may also regulate muscle
mass (Segalés et al, 2020), was lower at 3 h (adj. p = 0.003) and 8 h
(adj. p = 0.008 × 10−3) (Fig. 1C).

To more broadly investigate what specific functions were being
regulated as a consequence of our CON intervention, we ran
background corrected gene set enrichment analysis using Enrichr
with the 2023 gene ontology (GO) database as our cross reference
(GO: biological process & molecular function) and DEGs combined
across all time points (Aleksander et al, 2023; Chen et al, 2013;
Kuleshov et al, 2016; Stokes et al, 2023; Xie et al, 2021). Collectively,
no significantly upregulated gene sets were detected (Fig. 1E). A few
negatively regulated GO-based gene sets were detected, indicating a
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reduced “cellular response to insulin” and reduced “transcriptional
speed” (Fig. 1F,G). Although significantly enriched, only 2–15
genes were coding for each gene set, suggesting the effect was small.
Nevertheless, it should be noted that the significantly down-
regulated gene sets are almost exclusively driven by DEGs
expressed at 3 and 8 h. In addition to circadian rhythmicity of
gene expression, DEGs across time points in CON could be related
to feeding since the Pre, 30-min, and 24-h biopsies were taken 1, 2,
and 2 h after feeding, respectively, while the biopsies at 3 and 8 h
were both taken approximately 5 h after food intake (Fig. 1A).
Thus, our finding of slightly downregulated insulin stimulation
response and transcription genes at 3 and 8 h seems intuitive.

Differentially expressed genes peaked 8 h after
resistance exercise (RE) relative to pre

Following an acute bout of resistance exercise (RE, n = 8, Fig. 2A),
the number of DEGs relative to the Pre time point (adj. p < 0.05)
was: 30 min—64 upregulated, 5 downregulated; 3 h—1281 upregu-
lated, 1298 downregulated; 8 h—1764 upregulated, 1253 down-
regulated; and 24 h—751 upregulated, 445 downregulated (Fig. 2B).
Over 90% of the transcriptomic signatures were estimated to
originate from myofibers irrespective of time point. This propor-
tion was estimated using CIBERSORTx (Newman et al, 2019), a
computational cellular devonvolution tool that we have used
previously for inferring changes in cell type after an acute
hypertrophic stimulus (Murach et al, 2022). A recent acute exercise
and single-cell RNA-seq study in human skeletal muscle was used
as the reference dataset (Lovrić et al, 2022). The exercise involved
intense cycle sprint intervals and the muscle sampled was the vastus
lateralis, which corresponds with our study design. In this dataset
(Lovrić et al, 2022), “myocytes” were inferred to be myonuclei
based on the expression of adult myosin heavy chains and other
muscle fiber-enriched markers. Myonuclei usually appear in
skeletal muscle single-cell datasets and are sequenced alongside
mononuclear cells (McKellar et al, 2021; Murach et al, 2021c).
When excluding “myocytes” (myofibers), no appreciable change in
mononucleated cell proportions was estimated throughout recovery
(Fig. EV1). As anticipated, we noted changes in genes previously
recognized as responsive to RE and/or important for muscle
remodeling (Fig. 2C) (Correia et al, 2023; Ferreira et al, 2019;
Figueiredo et al, 2021; Pillon et al, 2020). Of all upregulated
protein-coding genes across the 24-h recovery period in the RE
group, 46% were differentially expressed at two or more time points
while the proportion was 34% for downregulated genes. In total,

2399 unique upregulated and 2126 unique downregulated DEGs
were identified throughout the 24-h recovery period (Fig. 2D).
DEGs at each time point relative to Pre are presented in
Dataset EV2.

The integrated 24-h recovery transcriptome
after acute RE

Using the two lists of all DEGs from across the entire 24-h recovery
period after RE (up- or downregulated) relative to Pre generated in
Fig. 2D (Complete list; Dataset EV2), we employed background
corrected gene set analysis as described above on each list
separately (Aleksander et al, 2023; Chen et al, 2013; Kuleshov
et al, 2016; Stokes et al, 2023; Xie et al, 2021).

For the 2399 upregulated protein-coding DEGs across the entire
time course of recovery, 44 biological processes (adj. p < 0.05) were
identified, with a large proportion of the gene sets in the 24-h post-RE
window relating to transcription, translation, and the synthesis of new
ribosomes. After exclusion of gene sets with large overlaps in
underlying DEGs, the top (adj. p-value ranked) processes were
ribosome biogenesis (GO:0042254), activation of protein localization
to telomere (GO:1904816), inhibition of apoptosis (GO:0043066),
activation of transcription by RNA polymerase II (GO:0045944),
activation of intracellular signal transduction (GO:1902533), and
response to unfolded protein (GO:00066986) (Fig. 3A). Fourteen
molecular function gene sets were also identified (adj. p < 0.05). Of the
molecular functions identified, RNA binding (GO:0003723), cadherin
binding (GO:0045296), ubiquitin protein ligase binding
(GO:0031625), purine ribonucleoside triphosphate binding
(GO:0035639), protein phosphatase 2A binding (GO:0051721), and
MAP kinase tyrosine/serine/threonine phosphatase activity
(GO:0033550) were the top gene sets, again excluding gene sets with
large overlap (Fig. 3B).

Next, we identified at which time point all DEGs within each
specific gene set were differentially upregulated relative to Pre.
Using the gene set analysis from the entire time course of recovery,
the number of upregulated DEGs in a gene set at each specific time
point was expressed as a percentage of the entire gene set response
(e.g., 61 DEGs in our dataset were found to regulate ribosome
biogenesis, and of these 61 genes, 57—or 93%—were enriched
following 8 h of recovery). Plotting these values for each individual
time point relative to Pre thus revealed a 24-h temporal pattern of
each gene set following acute RE (Fig. 3D,E). None of the most
highly enriched gene sets within our analysis peaked at 30 min
post-exercise. However, a targeted analysis of enriched gene sets

Figure 1. Gene expression patterns for biopsy-only control time course.

(A) Schematic overview for the control arm of the human intervention, n= 5. (B) MA plots showing differentially expressed genes (DEG) vs pre-values, time matched to
30min, 3, 8, & 24 h of recovery in the resistance exercise trial (see Fig. 2A). Purple and green dots indicate up- or downregulated regulated genes (adj. p < 0.05),
respectively. Top genes for adj. p-value are highlighted in plots. (C) Fold-change for targeted DEGs in the control group, n= 5. *adj. p < 0.05. Values represent log2 fold-
change ± SEM. SESN1 p= 0.0034 at 3 h, p= 8.7E−6 at 8 h, FOXO3 adj. p= 0.0004 at 3 h, adj. p= 7.7E−6 at 8 h, PPARGC1B adj. p= 0.0486 at 3 h, adj. p= 0.0110 at 8 h,
KLF5 adj. p= 1.0E−5 at 3 h, adj. p= 3.5E−14 at 8 h, ARNTL adj. p= 0.0120 at 8 h, PER3 adj. p= 7.8E−6 at 8 h, PER2 adj. p= 6.8E−9 at 3 h, adj. p= 7.3E−13 at 8 h, PER1 adj.
p= 8.3E−5 at 3 h, adj. p= 3.0E−8 at 8 h, NR1D2 adj. p= 0.0058 at 8 h, NR1D1 p= 1.1E−7 at 3 h. (D) Heatmap showing z-scores for 60 up-, and 90 downregulated DEGs
across all time points and volunteers in the control trial. (E, F) Gene ontology (GO) gene set enrichment analysis on DEGs across the entire 24-h control period. Numbers
within the bars indicate the proportion of DEGs in our dataset corresponding to the specific gene set. Rank values indicate the specific gene sets adj. p-value rank. (E)
Upregulated Biological Processes and Molecular Functions, (F) Downregulated Biological Functions, (G) Downregulated Molecular Functions. (B, C) DESeq2 was
calculated using a Wald test with a Benjamini–Hochberg p-value correction. (E–G) Gene ontology (GO) gene set enrichment analysis is analyzed using a Fisher exact test
with Benjamini–Hochberg p-value correction. Con control situation, ns not significant, Neg. negative, Reg. regulation. Source data are available online for this figure.
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with peak expression at 30 min revealed growth factor- and
glucocorticoid responses are strongest at 30 min post-RE, as well
as stress response signaling and mRNA catabolism (Fig. EV2A).
The peak in transcripts coding for mRNA catabolism 30 min after
RE (BTG2; adj. p = 0.005, ZC3H12A; adj. p = 0.003, ZFP36L1; adj.
p = 0.01, and TOB1; adj. p = 0.0005) precedes any marked down-
regulation of DEGs, suggesting catabolism of mRNA occurs in
muscle following upregulation of anti-proliferative- and mRNA-
decaying enzymes.

At 3 h post-RE relative to Pre, we observed two major
upregulated gene sets that were peaking: response to unfolded
proteins (20/44 genes; Fig. 3A,D) and MAP kinase phosphatase
activity (6/8 genes; Fig. 3B,E). The former of the two is primarily
driven by genes coding the heat shock protein family, such as
DNAJA1 (adj. p = 8.5 × 10−7 at 3 h) and HSPA1A (adj. p = 8.5 × 10−5

at 3 h). The latter, MAP kinase phosphatase activity, is driven by
genes encoding the dual specificity phosphatase protein family
(DUSP), responsible for dephosphorylation of tyrosine/serine/
threonine sites (DUSP2, 4, 5, 8, 10 & 16, adj. p < 0.05 at 3 h).
DEGs within this gene set peaked at the 3-h time point, with only
two remaining elevated at 8 h. This pattern was also reflected when
mapping the fold change of DEGs within each gene set, rather than
the number of DEGs, across the 24-h recovery (Fig. 3G,H). A clear
peak in genes encoding phosphatase activity directed towards the
MAP kinase superfamily early during RE recovery may be a
response triggered by the rapid severalfold increase in protein
phosphorylation of mTOR-targets such as S6K1 and 4EBP1
occurring at around 60–90 min post-RE (Apró et al, 2015; Moberg
et al, 2016). According to this previous work, the rapid rise in
anabolic signaling via protein phosphorylation at this time point is
then followed by a swift decrease, with some signaling proteins
showing close to baseline phosphorylation levels at 3 h of recovery
(Apró et al, 2015; Moberg et al, 2016).

Several upregulated gene sets are overrepresented to a similar
degree at 3 and 8 h of recovery such as ubiquitin protein ligase
binding (70/259 genes; GO:0031625; Fig. 3B,E,H), activation of
transcription by RNA polymerase II (171/745 genes; GO:0045944;
Fig. 3A,D,G), and activation of intracellular signal transduction
(111/446 genes; GO:1902533; Fig. 3A,D,G), pointing to increased
protein turnover. At the same time, inhibition of apoptosis (104/
385 genes; GO:0043066; Fig. 3A,D,G) was also upregulated, which
may be a direct response to the increased transcriptional emphasis
on the ubiquitin system. The post-translational modifications
mediated by ubiquitination of pro-apoptotic Bcl-2 family and
BH3-only proteins have been proposed to be crucial for cell
survival (Roberts et al, 2022). For instance, the transcript RNF144B
coding for the E3 ubiquitin ligase IBRDC2, which targets the Bcl-2
‘executioner’ Bax for ubiquitination (Benard et al, 2010), is
significantly upregulated at 3 h only (adj. p = 2.8 × 10−7).

Following the burst of transcription- and translation initiation-
coding transcripts at 3 and 8 h, the upregulated mRNA landscape
shifted toward the ribosome. At 8 and 24 h of recovery, regulation
of ribosome biogenesis (61/151 genes; GO:0042254; Fig. 3A,D,G)
and RNA binding (340/1289 genes; GO:0003723; Fig. 3B,E,H)
appear to be the dominant gene sets. Within the RNA binding gene
set, genes supporting ribosome assembly, posttranslational control
of RNA, splicing via RNA-binding motif protein family members
(e.g., RBMX, RBM15, RBM39), heterogeneous nuclear ribonucleo-
proteins (e.g., HNRNPU, HNRNPR, HNRNPC) and zinc fingers

(e.g., ZNF326, ZNF579, ZNF697) were differentially expressed.
Moreover, several transcripts coding ribosome biogenesis factors
(e.g., BMS1 and LTV1) as well as ribosomal assembly and transport
proteins (e.g., NIP7, NOP14, RPF2) comprised the highly enriched
ribosome biogenesis gene set (GO:0042254).

Gene sets enriched within the 2126 downregulated DEGs were
considerably fewer compared to the upregulated genes (Fig. 3C,F,I).
Here, five biological processes and 13 molecular functions were
downregulated (adj. p < 0.05). Out of the five significant biological
processes, four were related to transcription. The majority of DEGs
within these transcription-related gene sets were classified as
inhibitors of transcription, meaning RE likely acts on transcription
by up-regulating activation (Fig. 3A) and by repressing suppressor
genes (Fig. 3C) to a similar extent. In addition to transcription,
histone H3 methyltransferase activity was one of the gene sets
found to be significantly downregulated at 3 and 8 h following RE
using a targeted analysis of these specific time points (Fig. EV2B).

Information on genes with divergent responses
throughout the time course of RE recovery

Specifically focusing on genes that were upregulated early after RE
and downregulated later relative to Pre (Cluster 4; Fig. 2D), we
found that some of the negative regulators of RNA Pol II
transcription (GO:0045892, GO:0000122) followed this pattern—
upregulated 30 min and/or 3 h while downregulated later at 8 and
24 h (Fig. EV2C). Nuclear receptor subfamily 4 group A genes
NR4A1 and NR4A2 were among the 10 transcripts in the sequence-
specific DNA binding gene set (GO:0043565) that most clearly
followed a biphasic expression pattern (up early, down late;
Fig. EV2D). Related to NR4A1 and NR4A2, NR4A3 showed similar
biphasic tendencies, being upregulated at 3 h (4.93 log2FC, adj.
p < 0.05) and shifting toward lower expression at 24 h relative to
Pre (−0.78 log2FC, adj. p > 0.05; Fig. EV2D). This finding is in
agreement with previous reports suggesting NR4A family tran-
scripts are highly responsive early during exercise recovery (Amar
et al, 2021; Pillon et al, 2020). Others have also shown that NR4A3
is upregulated by seemingly opposing stimuli—following both acute
exercise as well as long-term inactivity (Amar et al, 2021; Pillon
et al, 2020). Many acute exercise interventions only sample muscle
for 3–5 h during recovery, so a delayed depression of the NR4A
genes (at 24 h into recovery) due to the biphasic nature of this gene
family (Fig. EV2D) may be underappreciated. An interpretation
could be that exercise ubiquitously drives NR4A expression, while
in fact, the post-exercise induction and repression could be
balanced, and this pattern may have a specific biological function
pertaining to exercise adaptation. Regardless, the existence of
biphasic genes within 24 h of RE recovery highlights the
importance of considering muscle biopsy sampling time points
when interpreting data.

Harmonizing the biopsy-only time course with the RE
recovery time course

The biopsy-only group that did not undergo exercise provides a lens
into the effects of circadian rhythmicity, diet, and/or the effect of the
muscle biopsy and how this relates to the RE response. Out of the 60
upregulated, and 90 downregulated genes expressed across the 24-h
recovery in the biopsy-only group, 28 and 58 genes respectively were
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similarly regulated in the RE group (Fig. EV3). Among them were
circadian genes PER1 and PER3, but not PER2 or PPARGC1β
(presented in Fig. 1C). By contrast, 8 upregulated DEGs in the control
group were downregulated by RE, and 9 genes that were

downregulated in the control group were instead upregulated by RE.
Of the genes that overlapped between the biopsy-only group and the
RE group (e.g., KLF15, NR1D1, NR1D2, PER1, SESN1), RE tended to
blunt their excursions and increase variability. For example, at the 8-h

Figure 2. Gene expression patterns during 24 h of recovery from resistance exercise.

(A) Schematic overview of resistance exercise (RE) intervention, n= 8. (B) MA plots showing differentially expressed genes (DEG) vs resting pre-values, following 30min,
3, 8, & 24 h of recovery from RE (adj. p < 0.05). DESeq2 was calculated using a Wald test with a Benjamini–Hochberg p-value correction. Red and blue dots indicate up- or
downregulated regulated genes (adj. p < 0.05), respectively. Top 10 genes for adj. p-value are highlighted in plots. (C) Normalized counts for targeted genes across the 24-
h intervention, n= 8. Values represent normalized counts ± SEM. Red dots = RE trial, gray dots = Control trial. (D) Heatmap showing z-scores for 2399 up-, and 2126
downregulated DEGs across all recovery time points and volunteers in the RE trial. Genes are clustered according to their expression pattern across time points within the
24-h recovery period. (B–D) DESeq2 was calculated using a Wald test with a Benjamini–Hochberg p-value correction.
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time point, KLF15 was −3.9 log2FC lower (adj. p = 0.04 × 10−12)
relative to Pre in the biopsy-only group, whereas after RE at the same
time point, KLF15 was −1.9 log2FC lower relative to Pre (adj. p = 0.02
× 10−4) with a larger range of expression. As expected, the effect of RE
outweigh any other effects with respect to overall gene expression, but
there appears to be interaction between exercise and the biopsy,
feeding, and or circadian rhythmicity across time points that should be
considered when designing muscle biopsy studies.

Inferring fiber type distribution from the transcriptional
data across cohorts

To characterize the fiber type distribution of the RE and CON group,
we used the gene counts of adult myosin heavy chain mRNAs
(MYH1—Type IIX, MYH2—Type IIA, and MYH7—Type I) to
interpolate skeletal muscle fiber type distribution. We accomplished
this by leveraging a publicly available dataset that contained both
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transcriptional data and fiber type distribution using muscle histology
(Reitzner et al, 2024). Correlating the % Type I fiber area from each
individual to the MYH transcript ratio (MYH7/(MYH2+MYH1))
yielded a strong significant correlation of r = 0.7178 (p < 0.0001,
Fig. EV4A). We then used these values to create a standard curve and
inserted ourMYH-transcript data along the fitted line, thus estimating
a fiber-type distribution in our samples. The muscle samples from the
CON group and RE group consisted of 54.3 ± 9.2 and 60.5 ± 12.2%
type I fiber area (Fig. EV4B), respectively, with no difference between
the two groups (p = 0.33).

Changes to the muscle DNA methylome at 30 min of
recovery after RE relates to mRNA responses at 3 h

Binding and expression target analysis (BETA) is a multi-omics
integration method for understanding transcriptional regulation
(Wang et al, 2013). We recently adapted this method for combining
reduced representation bisulfite sequencing (RRBS) data with
RNA-sequencing data to understand how DNA methylation
regulates the transcriptome during an acute loading stimulus in
mice (Ismaeel et al, 2023). We also used this technique to relate the
methylome to the proteome after exercise training in skeletal
muscle (Chambers et al, 2024). Briefly, BETA considers differential
methylation status (both hypo- and hyper-methylation) in relation
to transcription start sites using weighted scores to infer
transcriptional regulation, which is then combined with transcrip-
tomic data for validation. This method generates a regulatory
potential score on a gene-by-gene basis as well as an overall p value
for a cumulative distribution function (one-tailed
Kolmogorov–Smirnov test) that discriminates global time point
differences for up or down genes. In our recent work, myonuclear
DNA methylation status coincided with changes in myonuclear
gene expression as well as the acute metabolic responses that
occurred during rapid muscle growth, giving us confidence in the
validity of BETA (Ismaeel et al, 2023). We leveraged RRBS and
RNA-sequencing data in the current study to provide a deeper
understanding of transcriptional regulation in response to
acute RE.

We first used BETA to compare the methylome and tran-
scriptome responses to RE at 30 min of recovery versus Pre
(Dataset EV3 shows processed methylation data for 30 min post-RE
versus Pre). Combining datasets at this time point revealed <10
genes were likely being regulated at the level of methylation. This
result seems intuitive since changes in DNA methylation typically
precede changes in gene expression (Barres et al, 2012), which does
not peak until later time points in our data. As such, we combined
the 30 min methylome data with the later transcriptome time

points after RE. Changes to the methylome 30 min after RE were
strongly predictive of the changes observed in gene expression at
3 h after RE versus Pre (Fig. 4A), but not later time points. This
analysis inferred significant methylation control of 936 upregulated
genes at 3 h (p = 0.000007), and 805 downregulated genes were
identified according to BETA (p < 0.05), but the overall regulation
of repressed genes was not significant according to the
Kolmogorov–Smirnov test (p = 0.952). It is important to note that
the lack of significance according to BETA for downregulated genes
does not mean that methylation is not regulating gene expression
on a gene-by-gene basis, but that the global regulatory potential
score did not achieve significance. Thus, we present the BETA
analysis for individual genes to provide additional insights.

Of upregulated genes with a coordinated methylome and
transcriptome response, TNFRSF12A (FN14) was the most
significant (p = 0.000035; Fig. 4B). Upregulation of the TWEAK
receptor FN14 occurs during the muscle hypertrophic response to
exercise specifically in fast-twitch type 2 fibers of humans (Murach
et al, 2014; Raue et al, 2012). This role for FN14 induction during
muscle adaptation could be related to non-canonical NF-κB
pathway activation (Raue et al, 2015). Furthermore, inhibition of
FN14 in human myotubes increases C/EPβ and MuRF (Walton
et al, 2019). Alternatively, mechanistic work in rodents suggests
Fn14 knockout in muscle fibers improves endurance exercise
capacity and inhibits neurogenic muscle atrophy (Tomaz da Silva
et al, 2022), but ablation in satellite cells attenuates muscle
regeneration (da Silva et al, 2023). More gain and loss of function
studies are needed to clarify the role of Fn14 in hypertrophic
muscle adaptation (Dungan et al, 2022; Pascoe et al, 2020). Other
notable genes with a coordinated upregulated response to RE
included: RUNX1 (Fig. 4B), which regulates muscle mass (Wang
et al, 2005) and is enriched in myonuclei during rapid load-induced
hypertrophy (Murach et al, 2022); RBM10 (Fig. 4B), an RNA
splicing factor that we previously showed is altered at the
methylation level in muscle with late-life hypertrophic exercise in
mice (Dungan et al, 2022; Murach et al, 2021a); and NR4A3
(Fig. 4B), among the most exercise-responsive genes in skeletal
muscle that controls metabolism (Pillon et al, 2020). We previously
reported that promoter region CpG hypomethylation of Myc in
myonuclei (von Walden et al, 2020) coincided with strong
upregulation of myonuclear and muscle tissue Myc levels during
acute mechanical overload in mice (Murach et al, 2022; von
Walden et al, 2020). BETA also suggested coordinated methylation
and transcriptional regulation ofMYC by RE in human muscle here
(Fig. 4B). Evidence in cancer cells indeed suggests that MYC
transcription is regulated by DNA methylation status (Cheah et al,
1984; de Souza et al, 2013; Kaneko et al, 1985; Rao et al, 1989;

Figure 3. Gene set enrichment time course across 24 h of recovery from resistance exercise.

(A–C) Gene ontology (GO) gene set enrichment analysis on DEGs across the entire 24-h recovery period. Numbers within the bars indicate the proportion of DEGs in our
dataset corresponding to the specific gene set. Rank values indicate the specific gene sets adj. p-value rank. The corresponding timeline shows the proportion of DEGs with
the specific gene sets across the 24-h recovery period. (A) Upregulated Biological Processes, (B) Upregulated Molecular function, and (C) Downregulated Biological
Processes and Molecular function. (D–F) Timelines of the top (GO) gene sets from (A–C) expressed as a percentage of the number of DEGs within that gene set. (D)
Upregulated Biological Processes, (E) Upregulated Molecular function, and (F) Downregulated Biological Processes and Molecular function. (G–I) Average fold-change (vs
Pre) for highlighted gene sets (thick red lines) along individual DEGs within the specific gene set (lighter red lines). The average fold-change for the same genes in the
control situation is presented in gray. (G) Upregulated Biological Processes, (H) Upregulated Molecular function, (I) Downregulated Biological Processes and Molecular
Function. (A–C) Gene ontology (GO) gene set enrichment analysis is analyzed using a Fisher exact test with Benjamini–Hochberg p-value correction. Source data are
available online for this figure.
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Tsujiuchi et al, 1999), in addition to regulation by other epigenetic
layers (Fan et al, 2016; Lüscher, 2001) and G-quadruplexes (Brooks
and Hurley, 2010). Of the 936 methylation-controlled upregulated
genes predicted by BETA, 155 were coding for five biological
processes as suggested by gene set enrichment analysis (Fig. 4C).

BETA integration of 30-min methylome responses with 3-h
transcriptome responses to RE was not significant overall for
downregulated genes. However, gene-by-gene analysis revealed
methylation control for widespread downregulation of HOX genes
—HOXA2, HOXA3, HOXA5, HOXA9, HOXA11, HOXA13,
HOXB3, HOXB4, and HOXD8 (Fig. 4D). In muscle, HOX genes
are highly regulated by DNA methylation (Tsumagari et al, 2013),
and are methylation hotspots during aging that are influenced at
the methylation and mRNA levels by physical activity in humans
(Turner et al, 2020; Voisin et al, 2021). We previously reported
methylation changes around HOX genes in myonuclei during
hypertrophy (Murach et al, 2021b) and with exercise during aging
in muscle tissue (Chambers et al, 2024; Murach et al, 2021a). HOX
genes control muscle development (Alvares et al, 2003; Poliacikova
et al, 2021), but little is known about their role in RE adaptation in
adult skeletal muscle.

MYC governs the late stage RE response via
several processes

Due to the overall dominance of upregulated genes coding for
ribosomal biogenesis and RNA-binding (Fig. 3A,B), we asked
which transcription factors may be steering transcription toward
these gene sets. To answer this, we first ran an epigenetic Landscape
In Silico deletion Analysis (Lisa) (Qin et al, 2020) on all
upregulated genes across the 24-h time course (Dataset EV2). We
previously validated the accuracy of this computational approach
for Myc in skeletal muscle (Jones et al, 2022; Murach et al, 2022).
The five top transcription factors influencing the totality of the 24-h
recovery period were NEFLA, BCL3, FOS, MYC, and ATF3
(Fig. 5A). Since ribosome-related gene expression primarily
dominated late-stage recovery at 8 and 24 h (Fig. 3D,E,G,H), we
modeled which transcription factors were controlling expression of
DEGs upregulated at the later time points of recovery. The
influence of MYC on transcription coincided with the transcrip-
tome shift towards the ribosome (Appendix Fig. S1). MYC was the
number one transcription factor for genes expressed in the later
stages of recovery—that is, genes exclusively expressed at 8 and 24 h
relative to Pre (Fig. 5B).

Next, we compared the human 24-h post-exercise transcrip-
tional landscape to our previously published datasets on MYC
overexpression in muscle of mice (Jones et al, 2022; Murach et al,
2022). Briefly, for these experiments, we generated a doxycycline-

inducible muscle-specific model of pulsed MYC induction, called
HSA-MYC (human skeletal actin reverse tetracycline transactivator
tetracycline response element “tet-on” MYC) (Jones et al, 2022;
Murach et al, 2022). Twelve hours of doxycycline in drinking water,
followed by 12 h of non-supplemented water, causes upregulation
of MYC protein in skeletal muscle (Jones et al, 2022). MYC protein
returns to baseline levels after 24 h of drinking un-supplemented
water (Appendix Fig. S2). We profiled the transcriptome in the
plantaris and soleus muscles 12 h after doxycycline administration
(Jones et al, 2022; Murach et al, 2022). Of the 2399 upregulated
DEGs induced by RE over 24 h, 316 upregulated genes overlapped
the response elicited in the mouse soleus muscle by a single MYC
pulse (Fig. 5D–F, Dataset EV4; Jones et al, 2022). Removing the
overlapping genes from the human RE response subsequently
steered the transcriptional landscape away from the ribosome, as
indicated by gene set enrichment analysis (GO: biological
processes) on the remaining 2083 DEGs (Fig. 5D). Consequently,
using the same gene set enrichment analysis on the 316 genes
overlapping the human RE response and soleus transcriptome from
the MYC overexpression data generated gene sets largely related to
the ribosome (Fig. 5F–H)—specifically, genes coding proteins
involved in ribosome biogenesis, assembly, and translation initia-
tion and elongation (e.g., EEF and EIF genes). The gene expression
time course of ribosome biogenesis-related genes under the
influence of MYC largely reflected the time point-specific Lisa
analysis, suggesting MYC’s influence is greatest at 8 h of recovery
(Fig. 5G,H). The 672 DEGs exclusive to the MYC induction mouse
mainly regulated genes associated with acute changes to transcrip-
tional and translational speed (Fig. 5E). Regulation of overlapping
genes was also evident, albeit to a lesser extent, when comparing the
human RE response to the smaller MYC-mediated transcriptional
response in the plantaris muscle (Fig. EV5; Murach et al, 2022).

Beyond regulation of the ribosome, other genes upregulated by
both MYC induction and RE (both with adj. p < 0.05) included
those involved in actin folding by CCT/TriC (CCT2, CCT3, CCT4,
CCT5, CCT6A, CCT7, CCT8, TCP1), a chaperonin complex that
controls sarcomere assembly and organization in striated muscle
(Berger et al, 2018; Melkani et al, 2017). Genes associated with
metabolism of nucleotides (AMPD2, AK6, GART, IMPDH1,
IMPDH2, NME1, NME2, PPAT, UCK2), autophagy (ATG3, HSF1,
HSPA8, HSP90AA1, PGAM5, TOMM5, TOMM22, TOMM40),
translation initiation (EIF1AD, EIF2S1, EIF2S2, EIF3B, EIF4A1,
EIF4A3, and EIF5B), as well as RNA helicases (DDX21, DDX24,
DDX31, DDX54, DDX56, DHX15, DHX30, and DHX33) were also
upregulated (Dataset EV4).

Downregulated genes shared by RE in humans and MYC
induction in mice included DNMT3A, a regulator of DNA
methylation in skeletal muscle (Small et al, 2021; Villivalam et al,

Figure 4. Immediate (30 min post-RE) DNA methylome changes after RE predict transcriptional regulation at 3 h.

(A) Binding and expression target analysis (BETA) combining the DNA methylome at 30min to differentially expressed genes (DEGs) at 3 h post resistance exercise (RE).
BETA integration analysis of up- and downregulated genes to RRBS methylation performed relative to background with predictive interaction significance represented by p-
values in parenthesis. (B) Selection of upregulated differentially expressed genes (DEGs) at 3 h post-RE significantly predicted by the methylome at 30min. (C) Chord plot
illustrating the top five biological processes (gene ontology) regulated at 3 h post exercise by genes predicted by the methylome at 30min post exercise. Gene set-
associated genes are ordered according to their p-values. (D) Selection of downregulated DEGs at 3 h post RE suggested being affected by methylation changes at 30min
post RE. (A–D) was calculated using a one-tailed Kolmogorov–Smirnov test, while Gene ontology (GO) gene set enrichment analysis for (C) was analyzed using a Fisher
exact test with Benjamini–Hochberg p-value correction. Source data are available online for this figure.

EMBO reports Sebastian Edman et al

10 EMBO reports © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on D

ecem
ber 5, 2024 from

 IP 131.215.220.164.



2021), and genes involved in ErbB signaling (CAMK2G, CDKN1B,
ERBB3, GAB1) (Dataset EV4). Taken together, these data suggest
that MYC induction by acute RE in healthy untrained humans may
influence the muscle transcriptome in part by directing

transcriptional machinery toward the formation of new ribosomes
and enhanced translation. MYC may also regulate several other
processes involved in skeletal muscle exercise adaptation including
actin folding, autophagy, and DNA methylation.
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Pulsed muscle fiber specific MYC induction in mice is
sufficient for soleus muscle hypertrophy

Our data so far suggests that MYC is a major transcriptional
regulator during the acute recovery from RE in human skeletal
muscle. An association between skeletal muscle hypertrophy and
MYC-controlled acute exercise responses such as enhanced
ribosome biogenesis is established (Figueiredo et al, 2021;
Hammarström et al, 2020; Stec et al, 2016; von Walden et al,
2012; West et al, 2016), and inhibiting MYC in myotubes blunts
ribosome biogenesis and protein synthesis (West et al, 2016). Still,
it is unclear whether repeated MYC stimuli alone are sufficient to
induce hypertrophy. To address this, we utilized our murine
doxycycline-inducible muscle-specific model of pulsatile MYC
overexpression: HSA-MYC (Jones et al, 2022; Murach et al, 2022).

We provided doxycycline-supplemented drinking water to 4-
month-old female HSA-MYC mice for 48 h, followed by 5 days of
un-supplemented water for 4 weeks (five total MYC treatments in
n = 9 animals). Doxycycline-treated littermate HSA mice were
controls (n = 7 animals) (Fig. 6A). The doxycycline treatment
strategy is similar to the approach from the Belmonte laboratory for
overexpressing Yamanaka factors specifically in muscle fibers
(Wang et al, 2021). The doxycycline treatment caused MYC to be
significantly induced in muscle specifically (Fig. 6B; Appendix
Figs. S2 and S3). The 48-h pulse strategy induced a similar amount
of MYC protein in the soleus and plantaris muscles and a weaker
induction in the gastrocnemius and tibialis anterior muscles;
however, the induction was significant across all muscles. The
administration pattern was chosen to approximate MYC induction
in skeletal muscle by a regular weekly RE regimen.

Pulsed MYC induction resulted in a larger absolute mass
(+12.5%, p = 0.002; Fig. 6B) and normalized mass (+20.7%,
p = 0.025; Fig. 6C) of the soleus muscle relative to controls. This
magnitude of soleus muscle growth is similar to what is observed
after 4 weeks of progressive weighted wheel running (Englund et al,
2020) or 3 weeks of testosterone administration (Englund et al,
2019) in adult female mice. The murine soleus muscle contains a
myosin heavy chain (MyHC) fiber type distribution similar to
young healthy human vastus lateralis muscle (~50% MyHC I and
~50% MyHC IIa) (Bloemberg and Quadrilatero, 2012; Jones et al,
2022; Murach et al, 2020), which is the muscle from which biopsies
were obtained for the current study. The mass of other
predominantly fast-twitch mouse hindlimb muscles (containing
MyHC 2B and 2X, as well as 2A) was not different with MYC
induction versus controls (p > 0.05) (Fig. 6E). Likewise, the body
weight of the mice was not different between groups (p = 0.49,
Fig. 6F), nor was food intake in a subset of mice. These data

collectively suggest a muscle and/or fiber-type-dependent effect of
MYC for inducing muscle hypertrophy.

To further interrogate this muscle-specific growth, we per-
formed immunohistochemistry on soleus muscle (Fig. 6G). There
were no changes in the total amount of fibers within the soleus
(Fig. 6H) after pulsatile MYC induction nor were there major shifts
in muscle fiber type distribution (Fig. 6I). Overall (+15.1%,
p = 0.069) and MyHC I fiber cross sectional area (+16.1%,
p = 0.043) was larger with pulsatile MYC induction relative to
controls (Fig. 6J). There was a rightward shift in overall (Fig. 6K)
and MyHC I fiber size (Fig. 6L). Fibers expressing MyHC II had a
more modest response to pulsatile MYC induction, showing
+11.6% difference and a less pronounced rightward shift
(p = 0.22; Fig. 6J,M). Our prior work showed that the global
transcriptional response to a single pulse of MYC is most
prominent in the soleus (~1400 DEGs) relative to the plantaris
(~500 DEGs) and the quadriceps (<50 DEGs) (Jones et al, 2022;
Murach et al, 2022). Given the western blot data presented above
across muscle groups, we infer that the soleus muscle is more
sensitive to MYC induction than other muscles, specifically the
plantaris. These differences in gene expression between muscles
likely contributed to soleus-specific mass gains. Given the fiber type
and/or muscle-specific effects of Myc induction seen in the current
and previous work, we revisited our human time course data
(Figs. 1 and 2), asking if the degree of MYC expression could be
related to fiber type distribution. However, no such indications
were found, with peak MYC expression at 3 and 8 h (Fig. 2C)
showing correlations of r = 0.37 (p = 0.29; Spearman) and r =−0.31
(p = 0.38; Spearman) vs type I fiber distribution, respectively.
Future investigations will probe deeper into MYC dynamics across
muscles in our model as well as the specific mechanism(s) by which
MYC mediates growth of the soleus. Nevertheless, we provide the
first evidence that MYC is sufficient for muscle hypertrophy in the
predominant myosin heavy chain fiber types expressed in human
skeletal muscle.

Discussion

The 24-h time course of molecular responses to RE in human
skeletal muscle revealed several fundamental aspects of hyper-
trophic exercise adaptation: (1) the DNA methylome response to
RE at 30 min clearly associated with global gene expression at 3 h,
(2) a burst of translation and transcription initiation coding
transcripts occurs between 3 and 8 h, (3) global gene expression
peaks at 8 h after an RE bout, (4) ribosomal-related gene expression
dominates the mRNA landscape between 8 and 24 h during

Figure 5. The transcription factor MYC dominates late-stage acute recovery from RE by regulating ribosome biogenesis.

(A) Transcription factors predicted to be active during the 24-h recovery period from resistance exercise (RE) sorted by p-value. (B) Transcription factors predicted to
regulate the genes expressed exclusively at the later stages of acute recovery. (C) Comparison of upregulated DEGs across 24 h of RE recovery in humans (n= 8) vs soleus
muscle from MYC-overexpressing mice from Jones et al (2022). (D–F) The top five gene sets (GO: Biological Processes) based on DEGs in (D) the human exclusive gene
list, (E) MYC mouse exclusive gene list, and (F) overlapping gene list, respectively. Gene sets are ranked according to their adj. p-values. (G) Heatmap showing DEG
pattern for ribosome-related genes overlapping human RE response to a MYC response in mouse soleus muscle. Genes retrieved from all five gene sets presented in 3F.
(H) Time courses for MYC’s transcriptional influence (Red solid line), as well as three MYC-regulated gene sets (dashed lines). (A, B) Is analyzed with epigenetic
Landscape In Silico deletion Analysis (Lisa) using a one-sided Wilcoxon rank-sum test. (D–F) Gene ontology (GO) gene set enrichment analysis is analyzed using a Fisher
exact test with Benjamini–Hochberg p-value correction. Source data are available online for this figure.
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recovery after RE, (5) MYC is predicted as a highly influential
transcription factor throughout the 24 h recovery period and plays
a primary role in ribosomal and translation-related transcription
between 8 and 24 h, as well as other processes such as autophagy
and actin folding, and (6) periodic pulses of MYC are sufficient to
drive muscle growth in the mixed fiber type soleus muscle of
female mice.

Two to four hours after RE is typically considered the ideal time
to detect changes in gene expression in skeletal muscle (Dickinson
et al, 2018; Lavin et al, 2023; Louis et al, 2007; Raue et al, 2012;
Yang et al, 2005). By contrast, our data show that the largest
number of protein coding DEGs is detected 8 h into recovery. These
new findings may influence the design of future RE studies that aim
to evaluate gene expression and inform when single time-point
biopsies should be taken to interrogate specific recovery processes
(e.g., ribosome biogenesis versus MAPK gene expression versus
ubiquitin and apoptotic gene expression). Using the same human
muscle samples from this study, we previously reported that
ribosome biogenesis peaks at 3 h after RE, recovers at 8 h, then rises
again at 24 h (Figueiredo et al, 2021). The induction of ribosomal-
related mRNAs between 8 and 24 h likely relates to the biphasic
increase in rRNA that may support translational capacity for
muscle growth (von Walden, 2019; Wen et al, 2016). To this point,
our data reveal unique and sometimes multimodal or divergent
patterns of gene expression across gene categories over the 24-h
time course of recovery after RE. These patterns lend perspective to
instances where opposite results in specific gene responses at
different post-exercise time points are reported (Amar et al, 2021;
Pillon et al, 2020).

Previous studies report mixed findings regarding the agreement
between methylation and gene expression in skeletal muscle with
exercise training in humans; the relationship may be weak
(Robinson et al, 2017) or relatively strong (Lindholm et al, 2014;
Seaborne et al, 2018b). With acute exercise, however, the acute
methylation response may predict mRNA levels when specifically
evaluating the promoter of exercise-responsive genes (Barres et al,
2012; Turner et al, 2019). Using a time course approach with high
temporal resolution and a novel and holistic -omic integration
technique, we show a strong relationship between the 30-min post-
exercise global methylome response and the 3-h post-exercise
transcriptome of upregulated genes in skeletal muscle from
recreationally active but untrained individuals. This relationship
may change with additional structured training, however. For
instance, the Myc response to repeated bouts of RE tends to become

blunted over time (Viggars et al, 2022a); this may contribute to
hypertrophic response heterogeneity between individuals (Lavin
et al, 2021; Phillips et al, 2013; Sparks, 2017; Stec et al, 2016). BETA
analysis predicted MYC transcription to be regulated at the
epigenetic level, consistent with work in cancer cells (Cheah et al,
1984; de Souza et al, 2013; Kaneko et al, 1985; Rao et al, 1989;
Tsujiuchi et al, 1999). Our current and previous findings suggest
that Myc is regulated by DNA methylation status in muscle fibers
during hypertrophy (von Walden et al, 2020). More work is needed
to determine whether epigenetic changes underpin lower transcrip-
tional sensitivity of Myc with repeated bouts (Viggars et al, 2022a),
as well as reduced training responsiveness between individuals (Stec
et al, 2016). Another possibility is that the timing of transcriptional
responses to acute exercise in the trained state experiences a “phase
shift” relative to untrained muscle, and that this is related to
“priming” by altered DNA methylation. Such a phenomenon was
recently described in mouse muscle after endurance exercise
training (Furrer et al, 2023). There is a need for time course
studies in humans evaluating the molecular responses to RE in the
trained versus untrained state so that correct interpretations can be
made regarding differential expression of genes (such as MYC)
versus differential timing of expression. Regardless, our current
findings reinforce the evidence for acute exercise responses
operating under the control of early methylation events (Barres
et al, 2012; Seaborne et al, 2018a) and support data suggesting that
methylation changes are central to exercise training adaptations in
humans (Egan and Sharples, 2022; Roberts et al, 2023; Sharples and
Seaborne, 2019; Turner et al, 2019).

Our work points to MYC as a key player in controlling
hypertrophic adaptation to exercise in skeletal muscle. In mice, Myc
is actively transcribed and enriched in myonuclei during mechan-
ical overload (Murach et al, 2022). A single pulse of Myc in skeletal
muscle markedly alters the transcriptome (soleus>plantaris>qua-
driceps) (Jones et al, 2022; Murach et al, 2022) and rewires the
DNA methylation landscape (Jones et al, 2022). In humans, MYC
may act directly on rDNA after RE to influence ribosome
biogenesis (Figueiredo et al, 2021), consistent with MYC’s
occupation of the rDNA promoter during load-induced muscle
hypertrophy in mice (von Walden et al, 2012). MYC controls
ribosome biogenesis as well as skeletal muscle protein synthesis
independent from mTORC1 activation (Mori et al, 2020; West et al,
2016), but its ability to drive muscle growth has been unclear (Mori
et al, 2020; Phillips et al, 2013). It is likely that chronic induction of
MYC in muscle is detrimental to mass and function, similar to what

Figure 6. Four weeks of pulsed MYC induction is sufficient to elicit muscle fiber type specific hypertrophy.

(A) Graphical representation of the experimental design. (B) Soleus (p= 7.1E−6 vs Con), Gastrocnemius (Gastroc; p= 0.0136 vs Con, p= 0.0254 vs Soleus), Tibialis
anterior (TA; p= 0.0422 vs Con, p= 0.0048 vs Soleus), and Plantaris (Plant; p= 1.0E−5 vs Con) muscle probed for MYC after 48 h of doxycycline administration.
+=HSA-MYC (n= 6), − = HSA Control (n= 3). (C) Soleus muscle weight of HSA Control and HSA MYC mice after 5 bolus exposures over 4 weeks (p= 0.0200 vs
Con). (D) Soleus muscle wet weight normalized to body weight (p= 0.0014 vs Con). (E) Hindlimb muscle weight of plantaris, Gastroc, extensor digitorum longus (EDL),
TA, and quadriceps (Quad.) normalized to body weight. (F) Body weight of mice. (C–F) n= 7 HSA Control, n= 9 HSA-MYC. (G) Representative images of MyHC I
(purple) and MyHC II (black) muscle fiber size in HSA Control (left) and HSA-MYC (right) mice. Dystrophin is outlining fiber borders (red). Scale bar is 100 μm. (H) Total
number of fibers per soleus muscle. (I) Distribution of MyHC I and MyHC II fibers expressed as a percentage. (J) Cross sectional area of MyHC I (p= 0.0433 vs Con) and
MyHC II fibers, and their combined average. (K–M) Frequency distribution plot for average CSA (K; p= 0.0486 at 1001–1500 μm range vs Con) and fiber type size of
MyHC I (L; p= 0.0171 at 1001–1500 μm range vs Con) and MyHC II (M) fibers. (G–M) n= 4 HSA Control, n= 6 HSA-MYC. Dots are biological replicates. (B–F, H–J)
Values represent mean ± SEM. (K–M) The box represents the 25th–75th percentile, the line represents the median, and the whiskers represent Min to Max. *p < 0.05 vs
control, #p < 0.05 vs soleus. Analyzed using Two-way ANOVA with Bonferroni posthoc (B) or Fisher’s LSD (K–M), Welch’s T-test (C–J). MyHC myosin heavy chain, CSA
cross sectional area. Source data are available online for this figure.
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occurs with prolonged chronic mTORC1 activation (Castets et al,
2013; Ham et al, 2020). By using a doxycycline-inducible and
pulsatile model of MYC induction in skeletal muscle, we show for
the first time that MYC can promote growth of skeletal muscle
mass in the murine soleus. Our prior and current work suggests this
hypertrophy could be due to ribosomal regulation—biogenesis,
efficiency, and/or specialization (Jones et al, 2022; Murach et al,
2022). Larger muscle size caused by MYC may also be attributable
to the regulation of several other processes such as actin folding
and/or autophagy among others. Transcriptome data from MYC
induction in the soleus indicates that a variety of other processes
contribute to hypertrophy since >1300 genes are altered by a single
MYC pulse (Jones et al, 2022). Our findings encourage further
investigation of how pulsatile MYC supports long-term anabolism
at the molecular, signaling, and cellular level across muscles, fiber
types, sexes, and ages.

Collectively, the time course of -omics responses to RE in
healthy untrained humans, alongside the repeated biopsy control
group, is a valuable resource to the skeletal muscle field. Our results
define the molecular landscape after exercise at high temporal
resolution and will help inform the design of future human exercise
studies. We detail the interplay between the methylome and
transcriptome, identify MYC as a key component of the RE
response, and show that MYC is sufficient for muscle growth. This
study complements previous and ongoing efforts at defining the
acute muscle -omics responses to RE in humans (Amar et al, 2021;
Pillon et al, 2020; Sanford et al, 2020) to uncover new molecular
regulators of hypertrophic physical activity. We lay the groundwork
for future investigations that will expand on how transcriptional
regulators such as MYC control muscle mass and adaptation in
skeletal muscle.

Methods

Reagents and tools table

Reagent/Resource Reference or Source

Identifier
or Catalog
Number

Experimental Models

Human skeletal actin reverse
tetracycline transactivator
tetracycline response element
“tet-on” HSA-MYC Mice

Jackson Laboratory Strains
038301 &
019736

Recombinant DNA

Antibodies

Dystrophin primary antibody Abcam, St. Louis, MO, USA ab15277

MyHC 1 Developmental Studies
Hybridoma Bank, Iowa City, IA,
USA

BA-D5

Anti-MYC Cell Signaling, Danvers, MA,
USA

D84C12
cat. 5605

Secondary antibody utilized
for MYC stain

LI-COR Biosciences, Lincoln, NE IRDye
800CW/
680RD

Oligonucleotides and other sequence-based reagents

Chemicals, Enzymes and other reagents

Reagent/Resource Reference or Source

Identifier
or Catalog
Number

TRI Reagent Sigma-Aldrich, St Louis, MO,
USA

Doxycycline hyclate Sigma D9891-5G

Software

MyoVision Viggars et al, 2022b; Wen et al,
2017

HISAT2 (2.0.5) Kim et al, 2015

featureCounts (1.5.0-p3) Liao et al, 2014

R (Version: 4.1.0) https://cran.r-project.org/bin/
windows/base/old/4.1.0/

DESeq2 (1.42.0) Love et al, 2014

org.Hs.eg.db: Genome wide
annotation for Human. R
package (version 3.8.2)

Carlson et al, 2019

CIBERSORTx Newman et al, 2019

Seurat analysis pipeline Hao et al, 2021

methylKit R package Akalin et al, 2012

Enrichr with 2023 gene
ontology database

https://maayanlab.cloud/
Enrichr/ 2023-Aug-16
Aleksander et al, 2023; Chen
et al, 2013; Kuleshov et al,
2016; Xie et al, 2021

Landscape In Silico deletion
(LISA) Analysis

Qin et al, 2020

Venny (2.1) https://bioinfogp.cnb.csic.es/
tools/venny/index.html 2023-
Aug-23

BETA Analysis Wang et al, 2013

GraphPad Prism (version 7.00
for Mac OS X)

GraphPad Software, La Jolla,
CA

Rstudio https://posit.co/download/
rstudio-desktop/

BioRender https://www.biorender.com/

Affinity Designer (2.3) https://affinity.serif.com/en-
us/designer/

Other

Illumina NovaSeq 6000 150 bp paired-end sequencing;
Novogene Corp. Inc.,
Sacramento, CA, USA

Single-cell RNA sequencing
data from Lovrić et al
(GSE214544)

Lovrić et al, 2022

Previously published reduced
representation bisulfite
sequencing (RRBS) for
ribosomal DNA (rDNA)

Figueiredo et al, 2021

Trim Galore Wrapper (FastQC
& Cutadapt)

https://github.com/
FelixKrueger/TrimGalore

Published gene- and fiber-type
area distribution data

Reitzner et al, 2024

RC/DC Protein Assay BioRad, Hercules, CA, USA cat. 500-
0119
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Ethical approval

The regional Ethical Review Board in Linköping (2017/183-31)
approved the study protocol for the human intervention. The
volunteers received oral and written information about the study,
and subsequently provided their informed consent prior to study
enrollment. The study protocol conformed with the Declaration of
Helsinki. IACUCs at the University of Arkansas (UA, AUP 21038)
approved all animal procedures. Mice were housed in a tempera-
ture and humidity-controlled room, maintained on a 12:12 h
light:dark cycles, and food and water were provided ad libitum
throughout experimentation. All animals were sacrificed via
cervical dislocation under deep anesthesia with inhaled isoflurane.

Volunteers

A subset of thirteen volunteers was chosen for analysis from
previously published studies (Figueiredo et al, 2021; von Walden
et al, 2021). The subset was chosen based on which participants had
the most complete set of biopsy materials still available. Eight
recreationally active volunteers were analyzed from the RE group
(5m/3f), and five from the CON group (3m/2f). The volunteers in
the RE group had a mean age of 32 ± 5 years, height of 181 ± 9 cm,
weight of 83 ± 8 kg, and body mass index (BMI) of 25.3 ± 2.0. The
corresponding values for the CON group were an age of 30 ± 4
years, height of 177 ± 5 cm, weight of 85 ± 12 kg, and a BMI of
27.3 ± 3.6.

Experimental protocol

The experimental protocol has been described elsewhere (Figueir-
edo et al, 2021; von Walden et al, 2021). In short, volunteers were
instructed to not partake in any strenuous physical activity for the
legs for 3 days prior to the intervention. Following an overnight
fast, subjects consumed a breakfast consisting of a standardized
amount of liquid formula supplying 1.05/0.28/0.25 grams of
carbohydrates/protein/fat per kg of body weight (Resource
Komplett Näring, Nestlé Health Science, Stockholm, Sweden).
Skeletal muscle biopsies were collected from the vastus lateralis,
using a Bergström needle with manually applied suction (Evans
et al, 1982). Ninety minutes after breakfast, volunteers started a 45-
min standardized RE session. The RE session consisted of a short
warm-up on a cycle ergometer, followed by four sets at 7RM load
with two min of rest using both leg press and leg extension
machines. Muscle biopsies were collected 1 h after breakfast (Pre),
as well as 30 min and 3 h after RE completion. Between the
completion of the exercise and the 3-h biopsy, volunteers were
resting in a seated position under the supervision of the test leaders.
Immediately following the 3-h biopsy, another portion of the
standardized liquid formula was administered for lunch to the
volunteers (2.1/0.56/0.5 grams of carbohydrates/protein/fat per kg
of body weight). Following the standardized lunch, volunteers were
allowed to go home but were instructed to refrain from physical
activity and food intake. Eight hours after RE ended, volunteers
reported to the laboratory again, and another muscle biopsy was
collected whereby the volunteers were sent home overnight. At
home, volunteers were instructed to eat a standard dinner (a
balanced meal of ~25% of a protein source and equal distribution of
carbohydrate sources and greens) in the evening. Volunteers were

again instructed to refrain from any physical activity other than
light work. Volunteers got clear instructions to follow but were not
monitored during the rest period between the 3-h and 8-h, as well
as the 8-h and 24-h sampling. Another administered standardized
liquid formula breakfast was ingested the following morning
90 min prior to reporting to the laboratory for the final muscle
biopsy sampling 24 h after RE completion (breakfast ingested 2 h
prior to biopsy sampling). The experimental protocol is depicted in
Fig. 1A (CON) and Fig. 2A (RE). The sampling time points for the
CON group was matched to the exercise group.

RNA extraction, sequencing, and analysis

Approximately 25mg of muscle tissue was homogenized in TRI
Reagent (Sigma-Aldrich, St Louis, MO, USA) using a Bullet Blender
Tissue Homogenizer (Next Advance, Troy, NY, USA). An RNA
supernatant phase was then isolated using bromochloropropane and
centrifugation. Next, the RNA phase was processed using Direct-zol
filter columns (Zymo Research, Irvine, CA, USA). Finally, the RNA
was treated with DNAse and eluted in DEPC-treated water prior to
storage at −80 °C. Concentration, and purity of the RNA was
determined using a BioTek PowerWave XS microplate reader (BioTek
Instruments Inc., Winooski, VT, USA). Library preparation of mRNA
was done using Poly A enrichment, followed by RNA sequencing by
an Illumina NovaSeq 6000 (150 bp paired-end sequencing; Novogene
Corp. Inc., Sacramento, CA, USA).

Quality control of raw sequencing reads was performed by
removing adapters and low-quality reads. Subsequently, the reads
were aligned to the human reference genome (GRCh38.p12) using
HISAT2 (2.0.5) (Kim et al, 2015), and the quantification of reads
mapped to each gene was conducted using featureCounts (1.5.0-p3)
(Liao et al, 2014). Raw counts were used as inputs for the
downstream analysis in R platform (Version: 4.1.0). After filtering
out genes with low expression, DESeq2 (1.42.0) was used for the
normalization and differential analyses in the comparison between
different time point groups (Love et al, 2014). Genes with a false
discovery rate (Benjamini–Hochberg method) adjusted p-value <
0.05 were identified as differentially expressed genes (DEGs). We
have used org.Hs.eg.db (3.13.0) as reference for the annotation of
human genes (org.Hs.eg.db: Genome wide annotation for Human.
R package version 3.8.2.) (Carlson et al, 2019). To determine gene
expression patterns among the DEGs, we computed z-score per
gene along different time points for each group separately and
employed the Euclidean hierarchical clustering method to identify
clustered genes. The total number of clusters was determined
empirically. Raw and processed files have been deposited in the
GEO database (GSE252357).

Data deconvolution

Leveraging single-cell RNA sequencing data, the relative abundance
of different cell types from bulk tissue transcriptomes was
estimated using the computational tool CIBERSORTx (Newman
et al, 2019). Single-cell RNA sequencing data from Lovrić et al
(GSE214544) (Lovrić et al, 2022) were used for constructing the
reference matrix of the analyses. The original datasets based on 10X
Genomics technology, were reanalyzed using the Seurat pipeline
(Hao et al, 2021). Different cell types were separated with the
resolution parameter set to 0.5 and then annotated based on marker
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genes from the previous publication (Hao et al, 2021). For
determination of mononuclear cells, cell populations annotated as
“myocytes” were excluded from the analyses as they dominate the
transcriptome in the deconvolution. Subsequently, the normalized
gene expression data of individual cells were compiled to create a
comprehensive signature matrix encompassing the entire spectrum
of different cell types. This matrix served as the basis of cell type
proportion prediction in CIBERSORTx, with 1000 permutations to
ensure the robustness and accuracy of the predictions.

DNA methylation data processing and statistical analysis

We previously published reduced representation bisulfite sequen-
cing (RRBS) for ribosomal DNA (rDNA) (Figueiredo et al, 2021).
Here, we used this RRBS dataset for global DNA methylation
analysis (von Walden et al, 2020). Quality control and adapter
sequence trimming were performed using FastQC and Cutadapt,
respectively as parts of the Trim Galore wrapper. Low-quality base
calls (Phred score <20) were removed prior to trimming adapter
sequences. Bismark aligner was used to align the sequence reads to
the bisulfite-converted GRCh38 genome prior to data processing.
Coverage (.cov) files produced from Bismark aligner were used for
data analysis in the methylKit R package (Akalin et al, 2012).
MethylKit was used to pool samples into their respective groups to
maximize read coverage across the genome using a minimum read
cutoff of 10 reads per base, and minimum base coverage of
1 sample per group. Differentially methylated regions (DMRs) were
determined by genomic ranges for every gene promoter as defined
by the hg38.bed file obtained from NCBI. Fisher’s exact test with
sliding linear model (SLIM) correction for false discovery (Wang
et al, 2011) was used to qualify both differentially methylated sites
and differentially methylated promoters within the dataset. Percent
methylation and percent differential methylation were then
obtained from methylKit following analysis.

Pathway analysis, transcriptional regulators, and
BETA analysis

The up- and downregulated DEG (adj. p < 0.05) were initially
separated. All DEGs from 30-min, 3-, 8-, and 24-h post-exercise
biopsies were collapsed into one DEG list across the 24-h recovery
period for up- and downregulated genes, respectively. Gene set
enrichment analyses were conducted on the collapsed gene lists
using Enrichr (https://maayanlab.cloud/Enrichr/ 2023-Aug-16)
with the 2023 gene ontology (GO) database as our cross reference
(Aleksander et al, 2023; Chen et al, 2013; Kuleshov et al, 2016; Xie
et al, 2021). We used all protein-coding genes detected in our
muscle samples (14,392 genes, Figs. EV1 and 2) as our background
correction for the pathway analysis, as suggested by Stokes et al
(Stokes et al, 2023). The output for gene sets within the Biological
Process and Molecular Function of the Gene Ontology database are
reported as source data, and the number of genes, and adjusted p-
values of selected enriched gene sets are presented in Fig. 2. The
time course analysis for each gene set is based on the proportion of
DEGs within each gene set in the current dataset expressed at each
biopsy time point relative to Pre. Thus, the number of DEGs within
a specific gene set per time point is divided by the number of DEGs
within the same gene set from the pooled 24-h DEG list,
described above.

Landscape In Silico deletion Analysis (Lisa) was run according to
the recommended procedures as reported by Qin et al (Qin et al,
2020), consistent with our previous work (Jones et al, 2022; Murach
et al, 2022). In brief, DEG lists (adj. p < 0.05) were run using software
on http://lisa.cistrome.org (2023-Aug-20). If the number of DEGs was
above 500, the analysis was run locally using the command line. Lisa
analysis was performed on the collapsed upregulated 24-h gene list,
and on upregulated genes expressed at different time points. The
Cauchy combination p-value test was used to determine the overall
influence of MYC. Overlapping DEGs between the human RE
response and the MYC mouse was analyzed using Venny2.1
(https://bioinfogp.cnb.csic.es/tools/venny/index.html 2023-Aug-23).

We presented the method for incorporation of RRBS and RNA-
seq data using BETA in a previous publication (Ismaeel et al, 2023).
BETA is a software that provides an integrated analysis of
transcription factor binding to genomic DNA and transcript
abundance using chromatin immunoprecipitation sequencing
(ChIP-seq) and transcriptomics (RNA-seq) datasets (Wang et al,
2013). BETA takes into consideration the distance of the regulatory
element relative to the transcription start site (TSS) by modeling
the effect of regulation using a natural log function termed the
regulatory potential (Eq. 1), as described previously by Tang and
colleagues (Tang et al, 2011). CpG islands were converted into
“methylation peaks” similar to transcription factor binding peaks,
which is built using the GRCm39 CpG island bedfile downloaded
from the UCSC genome browser. Only genes differentially
expressed with adjusted p < 0.05 from RNA sequencing analysis
were included as input for gene expression. The BETA basic
command was run with the following parameters “-c 0.05 --df 0.05
--da 500”.

sg ¼
Xk

i¼1
e�ð0:5þ4ΔiÞ (1)

In the current study, a CpG island (k) within 100 kb of TSS of
gene (g) is included in the calculation for the regulatory potential
score (s). The distance between the CpG island and the TSS is
expressed as a ratio relative to 100 kb (Δ). The scoring is weighted
based on the distance from the TSS (higher for smaller distances,
lower for larger distances).

BETA integration gene set enrichment analysis

Gene set analysis was performed using the enrichR R package. Up-
and down-target genes resulting from BETA integration of DNA
methylation and RNA-sequencing datasets were included in
independent up and down gene sets. The 2023 Gene Ontology
database Biological Processes was used to annotate up and down
gene sets and determine enriched ontologies for each gene set.
GOplot R package was used to combine log2 fold change for each
gene with their respective enriched gene sets.

Interpolation of fiber type distribution in muscle samples

Published gene- and fiber-type area distribution data from Reitzner
et al (Reitzner et al, 2024) were obtained. A ratio of MYH7 to
MYH1 & MYH2 normalized counts was created for each baseline
sample (MYH7/(MYH1+MYH2)). Next, a standard curve was
created for estimating fiber type distributions based on the gene
ratio (Fig. EV4A). An identical gene ratio (MYH7/(MYH1+
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MYH2)) was created for the baseline samples in our dataset, and
type I fiber area % was subsequently interpolated using the standard
curve created from the values obtained from Reitzner et al (Reitzner
et al, 2024).

Generation of HSA-MYC mice and in vivo pulsatile
overexpression experiments

Human skeletal actin reverse tetracycline transactivator tetracycline
response element “tet-on” MYC (HSA-MYC) mice were generated
as previously described (Jones et al, 2022; Murach et al, 2022)
(Jackson Laboratory Strains 038301 and 019736). A subset of mice
(n = 8) was crossed with tet-on green fluorescent protein mice for
myonuclear isolation experiments not presented here (Jackson
Laboratory Strain 005104). For all MYC experiments, littermate
mice (HSA or HSA-GFP) were controls; all mice were heterozygous
for each transgene. At four months of age, control (n = 7) and MYC
overexpressing female mice (n = 9) were given doxycycline in
drinking water with sucrose (0.5 mg mL–1 with 2% sucrose) for 48 h.
All mice were then given un-supplemented drinking water for the
remaining 5 days of the week. This dosing strategy was repeated 5
total times. All mice were euthanized 24 h following the final
doxycycline treatment. Some mice were used for analyses not
described here, so the histology results are from n = 4 control and
n = 6 MYC induction mice. Mice were euthanized in the morning
(before 10:00 AM) and all tissues were harvested, weighed, and
frozen in liquid nitrogen-cooled isopentane using optimal cutting
temperature compound. The average mass of both muscles for
every mouse is presented.

Immunohistochemistry

Fiber cross sectional area and fiber type analyses on the soleus
muscles were performed as previously described (Dungan et al,
2022; Murach et al, 2020). Briefly, 8 µm sections were cut using a
cryostat and air dried for ≥1 h. Primary antibodies for dystrophin
(1:100, ab15277, Abcam, St. Louis, MO, USA) and MyHC 1 (BA-
D5, Developmental Studies Hybridoma Bank, Iowa City, IA, USA)
were applied for ≥4 h in a PBS cocktail. After several PBS washes,
isotype-specific secondary antibodies were applied for 1 h. Follow-
ing several PBS washes, the slides were mounted with cover slips
using a 50/50 solution of PBS and glycerol. Muscle cross sections
were imaged using a Zeiss AxioImager M2. Fiber cross sectional
area, fiber number, and fiber type distribution was analyzed using
MyoVision (Viggars et al, 2022b; Wen et al, 2017), as we have
previously described, using the entire muscle cross-section.

Western blotting for MYC

Western blots were for MYC were carried out as previously
described (Jones et al, 2022). Briefly, 20 mg of frozen muscles and
liver were powdered and homogenized in Laemmli buffer.
Following RC/DC assay (BioRad, Hercules, CA, USA, cat. 500-
0119), 40 μg of total protein was subjected to SDS-PAGE using a
10% gel. Membranes were blocked with 5% of milk. Primary
antibody incubation was conducted at 4 °C for ~72 hours using
anti-MYC (D84C12 cat. 5605, Cell Signaling, Danvers, MA, USA)
diluted 1:500. Secondary antibody (IRDye 800CW/680RD, LI-COR
Biosciences, Lincoln, NE) was diluted 1:10,000 and membranes

were imaged on LI-COR Odyssey FC using IR detection. All bands
were normalized to the 45-kDa actin band of Ponceau S stain as a
loading control.

Statistical considerations

Figures were generated using GraphPad Prism version 7.00 for Mac
OS X (GraphPad Software, La Jolla, CA), Rstudio, BioRender, and
Affinity Designer 2.3. Data presented as mean ± standard deviation
of mean unless otherwise stated. For the human study, sample sizes
were based on tissue availability from a prior investigation where
the most complete sample sets were used (Figueiredo et al, 2021).
For the murine studies, sample size was based on mouse
availability, but the magnitude of increase in soleus mass (~15%)
that we previously observed with 4 weeks of murine exercise (n = 8/
group) (Englund et al, 2020) or 3 weeks of testosterone
administration (n = 6–8) (Englund et al, 2019) was also used to
inform our analysis. Average muscle weights for each animal (mean
of both muscles) and histology data were analyzed using two-tailed
dependent t-tests with p < 0.05. Prior to t-tests, data were analyzed
for normality using Shapiro–Wilks formula. For all -omics
analyses, Benjamini–Hochberg adjusted p values (adj. p < 0.05)
were utilized.

Data availability

RNA-sequencing data were deposited in GEO under accession
GSE252357; processed data are provided as source data. A publicly
available user-friendly web-based application is provided at http://
data.myoanalytics.com for browsing the human transcriptional time
course data. RRBS was deposited in association with our previous
publication (Figueiredo et al, 2021). RRBS data are in GEO:
GSE252357.

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44319-024-00299-z.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44319-024-00299-z.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44319-024-00299-z
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Expanded View Figures

Figure EV1. Cell composition of muscle biopsies through data deconvolution.

Cell composition of all skeletal muscle biopsy time points excluding “myocytes” (CTRL n= 5, RE n= 8). The box represents the 25th–75th percentile, the line represents
the median, and the whiskers represent Min to Max, excluding outliers. SC satellite cell, CTRL control group, RE resistance exercise group.
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Figure EV2. Targeted gene set enrichment analysis.

Pooled gene ontology (GO) biological processes and molecular function gene sets. (A) Targeted analysis of gene sets peaking at 30min post resistance exercise (RE). (B)
Targeted analysis of gene sets significantly enriched in genes downregulated 3–8 h post RE. (C) Targeted analysis of biphasic DEGs composing cluster 4, as presented in
Fig. 2D. NR4A1 adj. p= 0.0049 at 30min, adj. p= 6.5E−8 at 8 h, adj. p= 1.0E−6 at 24 h, NR4A2 adj. p= 0.0135 at 30min, adj. p= 0.0081 at 3 h, adj. p= 4.7E−6 at 8 h,
adj. p= 2.4E−6 at 24 h, NR4A3 adj. p= 1.8E−8 at 8 h. (A–C) Gene ontology (GO) gene set enrichment analysis is analyzed using a Fisher exact test with
Benjamini–Hochberg p-value correction. (D) Gene expression of selected genes with a biphasic gene expression pattern, up early/down late, n= 8. DESeq2 was calculated
using a Wald test with a Benjamini–Hochberg p-value correction. *p < 0.05 vs Pre values. Neg. negative, Reg. regulation.
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Figure EV3. Venn diagram illustrating overlap in gene expression between the biopsy-only control group and the post-RE response at 3 and 8 h.

(A) Venn-diagram of up and downregulated differentially expressed gene lists from the resistance exercise and control group. RE resistance exercise. (B) Genes
corresponding to the overlap presented in (A).
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Figure EV4. Interpolated fiber type area distribution of muscle samples.

(A) Correlation of gene expression data with type I fiber area asses by muscle histology (p= 3.0E−5), data from Reitzner et al (2024). Blue dots = Data points from
Reitzner et al (2024), Red dots = interpolated values based on gene data. (B) Data table of type I fiber area % in each participant.
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Figure EV5. Transcriptional similarities between human RE recovery and MYC overexpression in mouse plantaris muscle.

(A) Comparison of upregulated DEGs across 24 h of RE recovery in humans (n= 8) vs plantaris muscle from MYC-overexpressing mice from Murach et al (2022). (B–D)
Top gene sets (GO: Biological processes) based on DEGs in (B) the human exclusive gene list, (C) MYC mouse exclusive gene list, and (D) overlapping gene list,
respectively. (B–D) Gene ontology (GO) gene set enrichment analysis is analyzed using a Fisher exact test with Benjamini–Hochberg p-value correction. Gene sets are
ranked according to their adj. p-values. (G) Heatmap showing DEG pattern for ribosome-related genes overlapping human RE response to a MYC response in mouse
plantaris muscle. Source data are available online for this figure.
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