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Plants lack specialized and mobile immune cells. Consequently, any cell type that
encounters pathogens must mount immune responses and communicate with
surrounding cells for successful defence. However, the diversity, spatial organization
and function of cellularimmune states in pathogen-infected plants are poorly

understood'. Here we infect Arabidopsis thalianaleaves with bacterial pathogens
that trigger or supress immune responses and integrate time-resolved single-cell
transcriptomic, epigenomic and spatial transcriptomic data to identify cell states.
We describe cell-state-specific gene-regulatory logic that involves transcription
factors, putative cis-regulatory elements and target genes associated with disease
and immunity. We show that arare cell population emerges at the nexus of
immune-active hotspots, which we designate as primary immune responder
(PRIMER) cells. PRIMER cells have non-canonical immune signatures, exemplified
by the expression and genome accessibility of a previously uncharacterized
transcription factor, GT-3A, which contributes to plant immunity against bacterial
pathogens. PRIMER cells are surrounded by another cell state (bystander) that
activates genes for long-distance cell-to-cellimmune signalling. Together, our
findings suggest that interactions between these cell states propagate immune
responses across the leaf. Our molecularly defined single-cell spatiotemporal atlas
provides functional and regulatory insights into immune cell states in plants.

Interactions between hosts and microorganisms are heterogeneous for
multiple reasons. Multicellular host tissues are composed of diverse
cell types that have distinct capacities to respond to microorganisms,
and microorganisms can occupy niches heterogeneously distributed
inthe host. Moreover, individual interactions between cells may occur
asynchronously. Thus, diverse cell states can co-existinatissue. Such
heterogeneity can mask fundamental principles of cellular interactions
when hosts and microbes are analysed at the tissue scale.

Plant-pathogen interactions have been studied to understand the
molecular mechanisms that underlie hostimmunity and pathogen viru-
lence?. Single-cell RNA sequencing (scRNA-seq) of leaf protoplasts has
revealed heterogeneous responses of plants infected by virulent bacte-
rial and fungal pathogens**. However, our understanding of cell-state
diversity is largely limited to a specific cell type (the mesophyll®) infected
by immunosuppressive virulent pathogens. Moreover, the spatiotem-
poral dynamics of plantimmune responses are unclear owing to the
low-throughput nature of transgenic reporter assays™*. Furthermore,
we have alimited understanding of the gene-regulatory mechanisms
that underlie cell-state diversity, such as specific binding of transcrip-
tion factors (TFs) to cell-state-specific cis-regulatory elements (CREs).
Single-nucleus assay for transposase-accessible chromatin followed
by sequencing (snATAC-seq) is often used to identify potential CREs
inindividual cell types and states®, but it has not been applied to study
plantimmune responses. These gapsin knowledge represent substantial
roadblocks to understanding how the plantimmune system operates as
a collective entity of cell populations with distinct functions’.

Inthis study, we aimed to fill these gaps through single-nucleus mul-
tiomic (snMultiome) and spatial transcriptomic analyses of a host plant
infected by virulent or avirulent bacterial pathogensin a time-course
experiment. Specifically, we use single nucleus RNA-seq (snRNA-seq),
snATAC-seqand multiplexed error robust fluorescence in situ hybridi-
zation (MERFISH)’ and the following three bacterial pathogens:
Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000),
DC3000 AvrRpt2 and DC3000 AvrRpml1 (hereafter AvrRpt2 and
AvrRpml, respectively). DC3000 is a virulent pathogen that can sup-
press plantimmunity through effectors and toxins®, whereas AvrRpt2
and AvrRpm1 are avirulent pathogens that carry effectors indirectly
recognized by plant nucleotide-binding domain and leucine-rich
repeat receptors to initiate effector-triggered immunity (ETI)° ™. Our
single-cell multidimensional atlas reveals previously uncharacterized
cell states, including a rare cell state that emerges at the centre of ETI
tissue regions (designated as PRIMER cells). Another cell state sur-
rounding PRIMER cells (designated as bystander cells) is described, and
we provideinsightsinto the functions and gene-regulatory mechanisms
of these cell states.

Time-resolved snMultiome analysis

We generated a time-resolved snMultiome atlas of A. thaliana leaves
infected by DC3000, AvrRpt2 or AvrRpml1 (Fig. 1a). Pathogens were
inoculated into leaves at a low dose (optical density at 600 nm
(ODg0) = 0.001), at which only asubset of plant cells are anticipated to
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Fig.1|Identification of diversecell statesinA. thalianaleavesinfected by
bacterial pathogens. a, Schematic of the time-course snMultiome analysis.
b, Two-dimensional embedding of nuclei from all samples by uniform manifold
approximation and projection (UMAP) based on the transcriptomic data.
Nucleiare coloured accordingto Leiden clusters. Left, major clusters. Right,
examples of subclustering of major clusters. Celltypes were annotated on the
basis of marker gene expression. ¢, GO enrichment analysis for marker genes
of each major cluster (Extended Data Fig. 2a). GO terms related to defence
responses are shown. Adjusted P values from a one-sided hypergeometric test
followed by Benjamini-Hochberg correction are shown. See Extended Data
Fig.2d foramore comprehensive analysis. d, Heat map showing normalized

encounter pathogen cells. Infected leaves were sampled at four different
time points (4, 6,9 and 24 h). Asacontrol, we prepared plants that were
mock-infected withwater and sampled after 9 h. Twoindependent rep-
licates were made for the AvrRpt2-infection 9-h condition and the mock
condition. We developed a protocol to rapidly isolate nuclei so that
transcriptome and epigenome changes during sample preparation were
minimized (Methods). A total of 65,061 cells from 15 samples passed
quality control for both RNA-seq and ATAC-seq dataanalyses (Extended
DataFig.1a-d). Our snATAC-seqdataidentified more accessible chro-
matin regions (ACRs) than previously reported bulk ATAC-seq data
fromimmune-activated leaves'>. Moreover, the datasets showed large
overlaps, whichsuggests that snATAC-seq can capture both known and
unknown ACRs (Extended Data Fig. 1e). ATAC-seq peaks associated
with ahousekeeping gene (ACTIN2) and animmune-related gene (/CSI)
were consistently detected across replicates, which provided support
for the high reproducibility of the snATAC-seq data (Extended Data
Fig.1f). Twoindependent replicates showed consistent transcriptional
reprogramming caused by AvrRpt2infection (Extended DataFig.1g,h),
which further confirmed the reproducibility of our data.
Dimensionality reduction and clustering were performed using the
snRNA-seq data. Some clusters were enriched in specific infection
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pseudobulk expression of subclusters. Well-characterized defence-related
genesareshown. See Extended Data Fig. 3¢ foracomprehensive analysis.
Thetop barsindicate the cell type and major cluster from which each subcluster
isderived from. The colour scheme for the major clusters matches with b.

e, Subclustering of major cluster 6 (PCCs). Defence-related genes showing
subcluster-specific expression are shown. f, Schematic of subclustering of
clusters 3,7 and 11 (immune-active mesophyll cells). g, Expression of genes
involvedin different steps of the biosynthesis and secretion of tryptophan-
derived secondary metabolites showninh. h, Simplified schematic of the
biosynthesis and secretion of tryptophan-derived secondary metabolites.

conditions and at specific time points (Extended Data Fig. 1i), which sug-
gests that the clustering analysis captured distinct cell statesinduced
by pathogen infection. We identified genes specifically expressed in
individual clusters (top markers are shown in Extended Data Fig. 2a),
which further clarified the identity of each cluster (major cell-type
annotations are shownin Fig. 1b). Cell types were also predicted on the
basis of ATAC-seq data. For instance, a cluster-specific ACR (peak at
chromosome 2 position 11172821-11173529) of clusters 0,12,19, 21 and
29 was associated with FDH, amarker gene for the epidermis (Extended
DataFig.2b,c; fullnames of genes highlighted in this study are provided
inthe Methods). Overall, the snMultiome data classified cell types and
states of A. thalianaleaves infected with a pathogen.

Gene ontology (GO) enrichment analysis of marker genes of each
clusteridentified mesophyll (clusters 3,7 and 11) and epidermis (clus-
ter 12) cell populations enriched with defence-related genes, including
those involved in the defence hormone salicylic acid (SA) pathway®
(Fig. 1c and Extended Data Fig. 2d). These clusters were well repre-
sented in ETI conditions (AvrRpt2 and AvrRpml infection) (Extended
Data Fig. 1i), which suggests that these cells were responding to the
immune-activating pathogens. This finding was also supported by
the strong expression of ICS1, a key gene for pathogen-induced SA



biosynthesis™ (Extended Data Fig. 2e). We observed increased acces-
sibility to chromatin regions upstream of the /CSIlocus after infection
by the ETIstrains (Extended Data Fig. 1f), aresult consistent with a previ-
ous bulk ATAC-seq study'. Together, our data captured heterogeneous
and coordinated changes in defence gene expression and chromatin
accessibility during pathogen infection.

Fine dissection ofimmune-cell states

Although the major clusters captured immune-active cells in the
mesophyll and the epidermis (Fig. 1c), clusters for other cell types,
suchasthevasculature, contained bothimmune-active and non-active
cells. This result is probably due to strong developmental signatures
(for example, vasculature marker genes are expressed at high levels
regardless ofimmune activation). To capture cell-type-specificimmune
responses, we performed asecond round of clustering for each major
cluster, which resulted in 429 subclusters with diverse transcriptome
patterns (Fig. 1b (right) and Extended Data Fig. 3a). Analyses of selected
immune-related genes showed both cell-type-specific gene expres-
sion and diverse expression in cell types (that is, cell-state diversity)
(Fig. 1d). The subclustering of our snRNA-seq data revealed complex
immune responses in leaf tissue that were not captured by bulk RNA-
seq (Extended DataFig.3h). Moreover, in some cases, genes seemed to
be highly co-expressed at the bulk transcriptome level but specifically
expressed at the subcluster level (Extended Data Fig. 3i,j), afinding that
further highlights the value of single-cell analyses.

A more detailed analysis of specific subclusters revealed strong
expression of markers for phloem companion cells (PCCs) (Extended
Data Fig. 3d) in major cluster 6. This cluster could be separated into
12 subclusters, some of which were enriched with immune-related
genes (Fig. 1e). Important genes for systemic acquired resistance (SAR),
such as ALD1 and FMOI1, were specifically expressed in PCC subclus-
ter 8 (Fig. 1e). This result indicates that a subset of PCCs contribute
to sending long-distance signals to systemic leaves. Notably, we did
not observe strong expression of ALDI or FMOI in other vasculature
clusters (Extended Data Fig. 3e). /LL6 was among the marker genes
enrichedin PCCsubcluster 8 (Fig. 1e and Extended Data Fig. 3f), and this
geneisinvolved in SARY. Together, these findings suggest that this cell
population may havearolein SAR, and /LL6 may be aPCC-specific SAR
regulator. Weidentified additional genes specifically enriched in PCC
subcluster 8 but notin other major clusters (Extended Data Fig. 3g). As
SARrequiresamobile signal that travels fromlocally infected leaves to
systemicleaves through the vasculature, it is possible that the identified
PCC population and marker genes have a specific role in SAR.

As another example of cell-population-specificimmune responses,
we analysed tryptophan-derived defence-related secondary metabolite
pathwaysinimmune-active mesophyllcells (clusters 3,7 and 11) (Fig. 1f).
Distinct expression of genesinvolved in different steps or pathways of
the biosynthesis or secretion of the defence metabolites camalexin
and indole glucosinolate was identified (Fig. 1g,h). This result indi-
cates that there is compartmentalization in the activation of defence
pathways that can potentially compete for resources (tryptophan).
Together, these examples highlight the diversity of plantimmune-cell
states, thereby confirming theimportance of understandingimmune
signalling pathways and networks at the cell-state level.

Linking the transcriptome and epigenome

Our snMultiome data enabled us to directly compare mRNA expression
and ACRs to identify potential CREs in different cell types, infection
conditions and time points (Extended Data Fig. 4a). We identified atotal
0f 29,002 significantly correlated (or linked) ACR-gene pairs within
500 kb of each gene across cellsin eachinfection condition. Most links
were within ashort distance of gene loci (<400 bp; potential promoter
regions), whereas others were more distal (potential enhancer regions)

(Extended Data Figs. 4b and 5a). We summarized peak-to-gene linkage
data for each gene by using the maximum Pearson’s correlation coef-
ficient values (peak-to-gene linkage score) (Extended Data Fig. 4c).
Genes that showed linksinall the conditions (cluster 8; Extended Data
Fig. 4c) were enriched with cell-type marker genes such as FDH, BCA2
and MAMI (Extended Data Fig. 4c,d). Genes that showed links specifi-
callyinETl-activated conditions (cluster 4; Extended Data Fig. 4c) were
enriched withimmunity-related genes (Extended DataFigs. 4d and 5b).
CBP60G, atranscriptional regulator ofimmunity, had multiple ACRs for
which accessibility significantly correlated with its mRNA expression
(Extended DataFig.4e). Genes that showed links specifically in DC3000
infection (cluster 2; Extended Data Fig. 4c) were enriched with jasmonic
acid (JA)-related genes (Extended Data Fig. 5b). This finding is consist-
entwith the ability of DC3000 to activate the JA pathway in plants using
the toxin coronatine and effectors to suppress plantimmunity'. These
results indicate that coordinated and cell-population-specific repro-
gramming of chromatinaccessibility and gene expressionis akey feature
ofleaf development,immunity and exploitation by virulent pathogens.

Although we identified many ACRs that were closely associated with
defence genes, 48% (304 out of 627) of defence genes (marker genes of
immune-active clusters 3, 4,7,11and 12) did not show significant links
with ACRs. Such non-linked defence genes often had constitutively
opened chromatin (Extended Data Fig. 4f) despite cluster-specific
changes in gene expression (Extended Data Fig. 4f, violin plot). This
finding suggests that there is an additional layer of gene regulation,
for example, the expression of upstream TFs. Different motifs were
enrichedin ACRs 2 kb upstream of linked and non-linked defence genes
(Extended DataFig.4g,h), which suggests that some defence TFs func-
tiontogether with chromatin reprogramming whereas others donot.

Identifying TF-ACR-gene modules

Toidentify cell-type-specific and state-specific gene-regulatory mecha-
nisms, we performed motif enrichment analysis for linked ACRs specific
toindividual clusters. For instance, comparing animmune-active meso-
phyll cluster (cluster 3) and a non-immune-active mesophyll cluster
(cluster 1) identified the enrichment of motifs for many TFs known to
beinvolved inimmunity, including WRKYs and CAMTAs (Fig. 2a). This
result highlights the utility of this strategy. We extended this analysis
tomarker ACRs for all the clusters and identified cluster-specific motif
enrichment (Fig. 2b). These findings suggest that different cell types
and states use both shared and distinct gene regulation through TF-
DNAbinding. Moreover, this approach canaccelerate the identification
of TFs with cell-type-specific or state-specific function.

To analyse motifaccessibility at the single-cell level--not the cluster
level--we calculated the motif enrichment score for each cell using
ChromVARY (Fig. 2c), which revealed heterogeneous accessibility to
465 motifs between and within clusters (Extended Data Fig. 6a). We
then asked whether the TF motif enrichment score correlates with TF
expression, and the results also showed heterogeneous expression
(Extended DataFig. 6b). We identified TFs that showed top correlations
between motif enrichment scores and their mRNA expressionin differ-
entcelltypes (Fig.2d and Extended DataFig. 6¢). For instance, WRKY46
mRNA expression and accessibility to WRKY46-binding sites over-
lapped mainly inimmune-active mesophylland epidermal cells across
time points (Fig. 2e). This finding suggests that the WRKY46 regulon
hasakey role duringimmune responsesin these cell types. By searching
for genes that are linked with ACRs containing WRKY46-binding sites
(Fig. 2f), we identified potential target genes of WRKY46, including
many known defence-related genes (Fig. 2g). This result is consistent
with the known function of WRKY46 in the SA pathway and defence
against P. syringae®®. Finally, we performed target gene prediction for
allthe TFsshownin Fig.2d and found that many TFs target genes related
to plant defence (Fig.2h). TFs that belong to the same family tended to
show overlapping target genes (Fig. 2h). In addition to WRKYs, motifs

Nature | www.nature.com | 3



Article

a WRKY27 WRKY22 b
120 WRK‘”“\\.L A WRKYSS
bHLH18 |
WRKY71 —

AREB3 —
OBP1
BHLH34 —
WRKY20 —
WRKY21 +
TCP23

b WRKY15

© WRKY4E 2. «%, WRKY70

»

—log, [P]
Motifs

® ee CAMTA2
.

. - WRKY70 |
MYR2
IDD4
WRKY6
TCP24
RVE7
ANL2

*  ° CAMTA1

30 . L CAMTA3

EDT1-|.0000000.00...00.00.0..00‘....

€ Aggregated
ATAC profile

g

A

TF motifs 1

Average
expression

.0.
..

Peaks

Cell 1
Cell 2
Cell 3
Cell 4

Motif 1
Motif 2
Motif 3
Motif 4

o o .

Per cent

expressed
S S

Peak1|o|=|o|~
Peak2|o|o|=| =
Peak3|o|=|o|o
Peak4|=|=|o|o
eak 1| ~|o|o|o
Peak2|o|o|o| =
Peak 3| o|=|o|o
Peak4|o|=|=|o

N
® 50

o o@
°

z
2

Motif 2
Motif 3

00000000000

@cccoco@c@cc00c0c@ @7

©oc—-eo 0

T
1.5 2.0 25

Fold enrichment

AvrRpt2 6 h

K

Cell type

Mesophyll
Unknown
Epidermis

Vasculature

WRKY46
motif enrichment
»

mRNA

AT5G58900
RAP2-6
RAP2-9
AT1G19000
WRKY31
BZIP53 g
ERF7

I

2

3

S
WRKY46

ABF3 o CRK13
GES

UGT85A1

-
o o o
o o o

o
3
o
<
{ ]

BCA1

-0.05 WRKY22 ® ° °

Correlation between TF mRNA and
motif activity score
o
=1
o

-0.10 WRKY46 PME17  AtRLP24

CRK7

MyC2 ACDE ® ®

CYP82G1 CAD8 o

TAT3
WRKY40 °

LURP1
WRKY33 BCA2

Fig.2|Identification of TF-ACR-gene modules. a, Scatter plot showing motif
enrichmentin cluster 3 (immune-active mesophyll) compared with cluster 1
(non-immune-active mesophyll). Pvalues were calculated using aone-sided
hypergeometric test. Theinset shows cluster 3 (purple) and cluster1(green).

b, Top marker motifs enriched in each cluster. ¢, Schematic of the motif
enrichmentscore analysis. ChromVARY was used to generate the cell-by-motif
matrix by combining the cell-by-peak (ACR) matrix and the peak-by-motif
matrix.d, Heat map showing Pearson’s correlation coefficients between motif
enrichmentscores and mRNA expression of the corresponding TFsineach cell

for TFssuchasIDDs, BPC1, TGA7 and ERF7 were predicted to be involved
inthe regulation of defence-related genes (Extended Data Fig. 6d). In
summary, our datasets identified numerous TF-ACR-gene modules
that potentially function during pathogen infection.

Time-resolved spatial transcriptomics

To validate the cell populations identified in the snMultiome analysis
andto characterize gene-regulatory modulesin the context of tissue, we
performed spatial transcriptomics using MERFISH’ on tissue sections of
infected leaves (Fig. 3a and Extended Data Fig. 7a). We curated 500 tar-
getgenes (Supplementary Table1), including markers of leaf cell types,
genesinvolved in processes such asimmunity, hormone pathways and
epigeneticregulation, and a variety of TFs. In addition to MERFISH, we
performed standard single-molecule fluorescenceinsitu hybridization
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(smFISH; single-round imaging) on the same tissues targeting /CS1. We
also analysed target bacterial genesto locate bacterial cellsin the tissue
section (Methods). We profiled leavesinfected by AvrRpt2 at four time
points, tomatch the snMultiome experiments, and mock-infected leaves
(Fig. 3a). The spatial localization of the transcripts for 500 genes was
decoded after the combinatorial smFISH imaging experiments, and
we detected millions of transcripts per sample (Fig. 3b and Extended
Data Fig. 7b). MERFISH analysis identified induction of the defence
geneALDI, whichindicated its target specificity (Extended DataFig.7c).

Akey step for single-cell analysis of MERFISH data is cell segmen-
tation (Fig. 3a). The standard segmentation approach using nuclear
(DAPI) and cytoplasmic (poly(A)) staining did not provide high-quality
segmentation results (Fig. 3b). We therefore implemented a separate
segmentation approach based on the distribution of transcripts,
and this strategy successfully segmented cells (Fig. 3c, Methods and
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nuclei. Middle, transcript-based segmentation in the same FOV (Methods).
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Extended DataFig. 7d). After segmentation, transcripts were assigned
to cells, which produced acell-by-gene matrix with each cell having its
spatial coordinates. Overall, we detected a median of 161 transcripts
and 79 genes per cell from a total 0of 121,998 cells from 5 leaf sections
(Imockinfectionand 4 time points after AvrRpt2infection) (Fig. 3d). We
performed integration and de novo clustering of all MERFISH samples,
whichidentified 14 clusters (Fig. 3e and Extended Data Fig. 7g). These
clusters were spatially mapped inindividual samples, which revealed
spatially organized cell populations (Fig. 3e). For instance, a de novo
MERFISH cluster captured vasculature cells in tissue sections (Extended
DataFig. 7h). The single-cell and quantitative gene-expression proper-
ties of MERFISH provide the opportunity to integrate spatially resolved
MERFISH data and molecular-information-rich snMultiome data.

Integrating snMultiome and MERFISH

Weintegrated MERFISH and snMultiome data (five conditions matching
the MERFISH samples; Fig. 4a) using the shared 500 genes, and cluster
labels defined by snMultiome were transferred to the MERFISH cells
(Fig. 4a,b and Methods). On the basis of this data integration, we spa-
tiallymapped clusters defined in the snMultiome data. Major cell types
defined by snMultiome were successfully mapped on the expected
regionsina MERFISH tissue sample (Fig. 4c), which indicated success-
ful data integration. This integration of MERFISH and snMultiome
dataenabled us to explore the spatial distribution of cell populations
defined in the snMultiome analysis.
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theresult of failed DAPI-staining-based segmentation (yellow region). Similar
patternswere observed across FOVs and samples. A systematic quantitative
analysisis providedin Extended DataFig. 7f.d, Violin plots showing the number
oftranscripts per cell (Ieft) and unique genes per cell (middle) detected ineach
MERFISH sample and the area size per cell (right). e, UMAP embeddings of cells
ineach samplebased onthe expression of 500 genes detected using MERFISH.
AlIMERFISH samples are integrated, and cells are coloured on the basis of
denovo Leidenclusters. f, Spatial mapping of Leiden clustersin each sample
using the same colour schemeasin e.Scalebar, 40 pum (c) or1mm (b,f).

Using this integrated dataset, we spatially imputed the entire tran-
scriptome and chromatin accessibility information (Extended Data
Fig.8a-d).Imputed /CSI (notincluded in the MERFISH panel) expres-
sionaccurately predicted the real spatial expression of /ICS1 (based on
smFISH) (Extended DataFig. 8a,b), aresult that confirmed the accuracy
of dataimputation. We also spatially imputed ATAC activity scores
(Extended DataFig. 5f) of ICS1and ALD1, and these showed consistent
patterns with mRNA expression (Extended DataFig. 8c). The motif activ-
ity of HSFB2b was predicted to be high in theimmune-active regions of
aleafat24 hpostinoculation (h.p.i.) (Extended Data Fig. 8d), whichwas
consistent with the mRNA expression pattern of HSFB2b validated by
MERFISH (Extended Data Fig. 8d). Overall, these results indicate that
spatial dataimputation of the transcriptome and the epigenome was
accurate, which enabled the analysis of gene-regulatory mechanisms at
single-cell and spatial resolution. To facilitate exploration of our data,
weimputed all 25,299 transcripts detected in the snMultiome analysis
and 465 motif enrichment scores on the 5 tissues used in MERFISH
experiments and made the data available on a data browser (https://
plantpathogenatlas.salk.edu).

Modellingimmune-response dynamics

Tounderstand the temporal dynamics ofimmune responses, we applied
pseudotime analysis to our snMultiome data. Pseudotime analysis
alignscells asatrajectory based on their gene expression, which is com-
monly used for inferring developmental trajectories'. We proposed
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Fig.4 |Integration of snMultiome and spatial transcriptome data.

a, Integration of snMultiome data (mock infected and AvrRpt2infected; five
samplesintotal) and the MERFISH datashownina UMAP.b, Integrated UMAP.
Left, nuclei and cells are coloured on the basis of cluster labels, which were
transferred fromsnRNA-seq to MERFISH (Methods). Right, the same integrated
UMAP coloured by assay types. ¢, Left, UMAP of snMultiome data coloured on

that by applying pseudotime analysis to a single developmental cell
type withvariousimmune states, we could better model the temporal
dynamics of heterogeneous infection and immune responses in an
infected leaf. Calculation of pseudotime scores for mesophyll cells
(Fig.4d and Methods) showed that the distribution of predicted pseu-
dotime scores in each sample was consistent with what is expected from
the real sampling time point (Fig. 4e). That is, cells with low pseudo-
time scores were enriched at early time points, whereas cells with high
pseudotime scores emerged at later time points. Thisresultindicated
that the temporal dynamics of immune responses were successfully
modelled. Cells with a wide range of pseudotime scores coexisted at
9 and 24 h.p.i., which suggests that cellular immune responses are
asynchronousininfected leaves.

To understand the spatial distribution of heterogeneous immune
states, we spatially mapped the pseudotime scores using label trans-
fer from snMultiome to MERFISH data (Fig. 4f). The spatial mapping
of the pseudotime scores revealed immune-active areas that were
distributed in pathogen-infected leaf tissues in a restricted man-
ner (Fig. 4f). These immune-active areas expanded over time and
seemed to merge at 24 h.p.i. (Fig. 4f). Notably, immune states also
dynamically change over time in eachimmune-active area, with older
immune-active cells (higher pseudotime scores) being surrounded
by youngerimmune-active cells (lower pseudotime scores) (Fig. 4f).
These results indicate that the oldest immune-active cells are prob-
ably plant cells that had direct contact with pathogen cells at early
time points and that immune responses spread to surrounding cells
through cell-cell communication over time.

Spatial mapping of bacteria

We sought to investigate whether spatially restricted immune-gene
expression can be explained by the distribution of bacterial cells.
smFISH targeting bacterial metagenes (19 highly expressed genes)
detected bacterial colonies at 24 h.p.i., which we overlaid with the spa-
tialmap of the pseudotime scores (Extended Data Fig. 8g). Asa control,
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the basis of major cell types: epidermis (magenta), mesophyll (green) and
vasculature (yellow). Right, spatial mapping of snMultiome cells coloured on
the basis of major cell types. AvrRpt2 9 h.p.i.sample was used. Scale bar,1 mm.
d, Pseudotime values calculated for mesophyll cellsinthe snRNA-seq data.

e, UMAP plots showing pseudotime valuesin cells from each time point. f, Spatial
mapping of pseudotime values based on dataintegration and label transfer.

we performed another MERFISH experiment using an A. thalianaleaf
infected by the immunosuppressive pathogen DC3000 at 24 h.p.i.
(Extended DataFig.8e-g). The distribution of theimmune-activating
strain AvrRpt2 overlapped with tissue regions with high pseudotime
scores (immune heightened) in contrast to the immunosuppressive
DC3000 strain (Extended Data Fig. 8e-g). We confirmed this obser-
vation by quantitatively analysing the neighbouring plant cells of
individual bacterial colonies (Extended Data Fig. 8h,i). Taken together,
these results indicate thatimmune-active regions defined by the
pseudotime analysis interact with the ETI-triggering pathogen; we
also captured potentialimmunosuppression by the virulent DC3000
pathogen.

PRIMER and bystander cells

We systematically identified genes for which expression significantly
changed across the pseudotime trajectory in the MERFISH data using
cell-type-specificinference of differential expression (C-SIDE)* (Fig. 5a
and Methods). BON3,ALD1 and FMOI were among the genes identified
for which expression was higher towards the centre of immune-active
regions (Fig. 5a). BON3 was induced in highly restricted areas in the
tissue after infection by AvrRpt2 (at 9 h.p.i.) (Fig. 5b), which was dis-
tinct from ALDI and FMOI (Fig. 5b-d and Extended Data Fig. 9a). Our
subclustering analysis of snMultiome data confirmed the pattern
observed with the MERFISH results (Fig. Se), which indicates that we
identified two distinct immune cell states. Expression of BON3 was
enriched in cells with the highest pseudotime scores (that is, the old-
estimmune-active cells) (Fig. 4e,f and Extended Data Fig. 9b), which
suggests that these cells are early responders to pathogen invasion.
Therefore, we designate this cell state as PRIMER cells, from which
immune responses might spread. Cells surrounding PRIMER cells are
designated as bystander cells.

PRIMER and bystander cells showed distinct transcriptional and
epigenetic signatures. PRIMER cells were enriched in CAMTA motifs
and a GT-3A motif, whereas bystander cells were enriched in WRKY
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motifs (Fig. 5i and Extended Data Fig. 9i). Genes previously shown
to be repressed by CAMTA3 were significantly overrepresented in
bystander cells compared with PRIMER cells (Fig. 5j; false discov-
ery rate (FDR) =5.0 x 107*, with hypergeometric test correction
using the Benjamini-Hochberg method), a result that supports the
transcriptional-repressive role of CAMTA3 in PRIMER cells.

Tounderstand the function of PRIMER cells and their gene-regulatory
mechanisms, we investigated an snMultiome subcluster inwhich BON3
wasenriched (subcluster 4). Although many PRIMER cell marker genes
were previously uncharacterized, we found several known genes,
including WRKYS8 and LSD1, as PRIMER cell markers (Extended Data
Fig.9c).Notably, BON3, WRKY8and LSD1 are all negative regulators of
immunity® >, although the precise mechanisms of how they suppress
immune responses remain elusive.

Further marker gene analysis of the PRIMER cell cluster identi-
fied GT-34 (which encodes a trihelix DNA-binding TF)*, the function
of which in leaf immunity remains uncharacterized (Fig. 5f). GT-3A
showed aspatial expression pattern similar to that of BON3 (MERFISH;
Fig. 5g), and the GT-3A motif was highly accessible in PRIMER cells
(snATAC-seq; Fig. 5h), which implies that it has a gene-regulatory
function in this cell population. To understand the role of GT-34, we
generated transgenic A. thaliana plants that ectopically overexpress
this gene (GT-34-0x). Bulk RNA-seq analyses revealed impairmentin
theinduction of genesinvolved in the SA pathway of GT-34-ox plants
infected by DC3000 (Fig. 5k). Furthermore, two independent lines of
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syringe-infiltrated at asuspension dose of 0D, = 0.001. Adjusted P values
were calculated using two-tailed Student’s t-test with Benjamini-Hochberg
correction.l,m, Results are shown as box plots, in whichboxes represent the
25th-75th percentiles, the centre lineindicates the median, and whiskers
extend to minimum and maximum values within1.5 times the interquartile
range.n, Proposed model for the potential role and regulation ofimmune-cell
states. Scalebar,100 pm (c,d), 200 pm (g) or 1 mm (b).

GT-3A-ox were more susceptible to DC3000 infection (Fig. 51), which
suggests that this previously unidentified cell-state-specific TF can
negatively regulate immunity. We also tested plants in which GT-34
was knocked out (gt3a-KO), and this mutant was more susceptible
to AvrRpt2infection (Fig. 5m). This result indicates that GT-3A func-
tion in PRIMER cells is required for optimal defence against aviru-
lent pathogens. snRNA-seq analysis of gt3a-KO plants revealed genes
thatare potentially regulated by GT-3A, either directly or indirectly.
Amongsuch genes, PUB36 expressionin PRIMER cells was significantly
impairedingt3a-KO plants at both 9 and 24 h.p.i. Notably, PUB36 has a
GT-3A-binding motifinthe upstreamregion (Extended Data Fig. 9d).
SA-related genes, including ALD1, were expressed at lower levels in
bystander cells in gt3a-KO plants than in wild-type plants (Extended
DataFig. 9e,f). This finding suggests thatinduction of GT-34 in PRIMER
cells isimportant for the proper induction of defence genes in sur-
rounding cells. Insummary, through the integration of time-resolved
snMultiome and spatial transcriptome data, we identified previously
unknown immune-cell states and a cell-population-specific TF that
regulates plant immunity.

Discussion

Plantimmunity comprises amulticellular networkin whichindividual
cellsinterpret input signals with their distinct molecular networks and
communicate with other cells. Our molecularly defined spatiotemporal
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atlas of pathogen-infected leaves revealed various cell states in tran-
scriptome and epigenome detail. This resource also provides ameans
toinvestigate individual cell states that have been obscured in conven-
tional bulk or dissected tissue analyses and by liveimaging of a limited
number of reporter lines. For instance, we identified a PCC subpopula-
tion with a distinct state characterized by the induction of SAR genes
(Fig.1e) and mesophyll subpopulations that activate different branches
of tryptophan-derived defence metabolite pathways (Fig. 1g).

We also described arare cell state located at the nexus of immune-
active hotspots, whichwe termed the PRIMER cell state (Fig. 5). In addi-
tion to mapping previously characterized genes (BON3, WRKYS, LSD1
and CAMTA3) withcommonimmunosuppressive functions to PRIMER
cells, our integrative snMultiome and MERFISH analyses identified
another PRIMER cellmarker gene, GT-34, whichencodes a TF, and dem-
onstrated thatit contributes to plantimmunity against pathogeninfec-
tion (Fig.5). Comparisons between PRIMER cells and their surrounding
cells (bystander cells) revealed distinct transcriptional and epigenetic
landscapes (Fig. 5). It is possible that there are additional specialized
cell states in PRIMER and bystander cells. A deeper understanding of
immune-cell states requires the development and application of new
methodologies, such asimaging techniques that visualize both patho-
geneffector proteins and numerous plantgenes simultaneouslyinthree
dimensions at single-cell resolution®? (see the section ‘Limitation of
this study’ in the Supplementary Information).

Previous studies have shown that GT-3A negatively regulates plant
defence against nematode infection in the root”, which suggests that
GT-3Amay havearolein defence against different types of pathogens
thatinfect other tissues. In support of this hypothesis, GT-34-ox plants
were more susceptible to the fungal pathogen Colletotrichum higgin-
sianum (Extended Data Fig. 9j).

Recent discoveries have shed light on therole of nucleotide-binding
domain and leucine-rich repeat receptors as calcium channels or
NADases? %, However, the exact mechanisms that underlie ETI acti-
vation and how this process effectively suppresses pathogen growth
arenot fully understood. It hasbeen proposed that localized acquired
resistance (LAR)** may be important for ETI””. LAR is a strong defence
responsein cells surrounding those that have been exposed to pathogen
effectors. Werevealed the spread of ETI responses from PRIMER cells
(Fig. 5e) and captured potential LAR responses with detailed molecular
information. Notably, ALDI and FMO1, encoding canonical SAR com-
ponents, were expressed in bystander cells but not in PRIMER cells
(Fig.5b-e), whichindicates that the SAR pathway has aspecificrolein
LARresponses. Thisideais plausible given the long-distance signalling
capability of SAR. We propose that PRIMER cells may undergo hyper-
sensitive cell death, which subsequently sends signals to neighbour-
ing cells that activateimmune responses, including the SAR pathway.
As activation of the SA pathway can suppress cell death®, GT-3A may
contribute to cell death in PRIMER cells by suppressing SA signalling
(Fig.5n). Further analysis of our data could uncover the roles of various
immune cell states and how these cells communicate with surrounding
cells to confer successful defence.

Inadditiontoidentifying previously unknownimmune-cell popula-
tions, our snMultiome data predicted numerous putative TF~ACR-gene
modules. The successful integration of snMultiome and MEFISH data
enabled us to spatially map gene expression and chromatin states
(Extended Data Fig. 8a-d). These results can be used to discover pre-
viously uncharacterized immunity-related genes, and defence-related
CREs can also be identified through de novo motif analysis.

Finally, we built a database (https://plantpathogenatlas.salk.edu) to
facilitate the exploration of previously uncharacterized cell popula-
tions associated with disease and resistance with spatial and temporal
information and potential regulatory mechanisms. Our database can
be used for hypothesis generation and testing and will catalyse new
discoveries of molecular mechanisms that underlie plant-microorgan-
isminteractions at high resolution.
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Methods

Reagents and kits

The following reagents and kits were used: ammonium persulfate
(Sigma, 09913); BSA solution (Sigma, A1595); Chromium Next GEM
Single Cell Multiome ATAC + Gene Expression kits (10x Genomics,
PN-1000283); Corning Falcon cell strainers (Corning, 08-771-2);
dithiothreitol (Thermo, R0861); EDTA, pH 8.0 RNase-free (Invitro-
gen, AM9260G); KCI (2 M) RNase-free (Invitrogen, AM9640G); MACS
SmartStrainers (Milteny Biotec, 130-098-458); MERSCOPE 500 Gene
Imaging kits (Vizgen, 10400006); MERSCOPE 500 Gene Panel (Viz-
gen, 10400003); MERSCOPE Sample Prep kits (Vizgen, 10400012);
N,N,N',N'-tetramethylethylenediamine (Sigma, T7024-25ML); NaCl
(5 M) RNase-free (Invitrogen, AM9759); NP40 (IGEPAL CA-630) (Sigma,
18896); paraformaldehyde (Sigma, F8775); PBS (10x) pH 7.4 RNase-free
(Thermo Fisher, AM9625); protease inhibitor cocktail (Sigma, P9599);
Protector RNase inhibitor (Sigma, 3335402001); Scigen Tissue-Plus
OCT compound (Fisher, 23-730-571); spermidine (Sigma, S2626);
spermine (Sigma, 85590); Triton-X (Sigma, 93443); and UltraPure 1M
Tris-HCl buffer pH 7.5 (Invitrogen, 15567027).

Gene symbols, names and ordered locus names

The following genes were highlighted in this study: ALDI (AGD2-LIKE
DEFENCE RESPONSE PROTEIN 1, At2g13810); BCA2 (BETA CARBONIC
ANHYDRASE 2; At5g14740); BON3 (BONZAI 3; At1g08860); CBP60g
(CALMODULIN BINDING PROTEIN 60-LIKE G; At5g26920); FDH (FID-
DLEHEAD; At2g26250); FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE I;
At1g19250); GT-3A (TRIHELIX DNA-BINDING FACTOR (GT FACTOR) BIND-
ING 3A; At5801380); ICS1 (ISOCHORISMATE SYNTHASE 1; At1g74710);
LSDI (LESION SIMULATING DISEASE 1; At4g20380); HSFB2b (HEAT
SHOCK TRANSCRIPTION FACTOR B2b; At4g11660); ILL6 (IAA-LEUCINE
RESISTANT (ILR)-LIKE GENE 6; At1g44350); MAM1 (METHYLTHIOALKY-
LMALATE SYNTHASE 1; At5g23010); WRKY8 (At5846350); and WRKY46
(At2g46400).

Plant growth and bacterial infection for single-cell and spatial
analyses

A. thaliana Col-0 was grown in a chamber at 22 °C with a 12-h light
period and 60-70% relative humidity for 30-31 days. Bacterial strains
were cultured in King’s B liquid medium with antibiotics (rifampicin
and tetracycline) at 28 °C. Three bacterial strains—P. syringae pv.
tomato DC3000 with an empty vector (pLAFR3), avrRpt2 (pLAFR3)
and avrRpm1 (pLAFR3)—have been previously described’ ™. Bacteria
were collected by centrifugationand resuspended insterile water toan
0D, 0f0.001 (approximately 5 x 10° c.f.u. ml™). In total, 20 A. thaliana
leaves (4 fully expanded leaves per plant) were syringe-inoculated with
bacterial suspensions using a needleless syringe. Syringe infiltration
was performed on one or two corners of each leaf, and bacterial suspen-
sions were spread throughout the entire leaf. We chose four different
time points (4, 6,9 and 24 h), representing early stages of infection and
when dynamictranscriptional reprogramming was observed in a previ-
ous study that used bulk RNA-seq*’. For each strain, four time points
were sampled at the same time of day by infiltrating bacteria at different
times to minimize the influence of circadian rhythms. The 20 infected
leaves were collected using forceps and immediately processed for
extraction of nuclei. For the mock condition, water-infiltrated leaves
were collected after 9 h.

Generation of transgenic plants and pathogen-infection assays

pWAT206 was agift from A. Takeda. The following plasmids were con-
structed using HiFi DNA assembly kits (New England Biolabs) and were
verified by Sanger sequencing. Three PCR fragments were amplified
from pBICRMsG* using primer pairs (mMEGFP-Nter_1_F plus mEGFP_1_R;
mEGFP_2_F plusmEGFP_2_R; and mEGFP_3_F plus mEGFPNter_3 R) and
were then assembled into Stul/Ascl-digested pBICAsclI*2. The resulting

plasmid was used as a template for two PCR reactions using primer
pairs mEGFP_Nter_1_F plus mEGFP_4R and mEGFP_4F plus mEGFP_
Nter_3R. These PCR products were assembled into Stul/Ascl-digested
pBICAscll, which produced pBIC_mEGFP_Nter. A PCR fragment was
amplified from pBIC_mEGFP_Nter using mEGFP_Cter_F1 plus mEGFP_
Cter_R,and thenused as atemplate for PCR using mEGFP_Cter_F2 plus
mEGFP_Cter_R. The resulting PCR fragment was assembled into Stul/
Ascl-digested pBIC_mEGFP_Nter to obtain pBIC_mEGFP_Cter. The
coding sequence of GT-34 (At5g1380) was amplified by PCR using the
primer pair GT3a_mEGFP_F plus GT3a_mEGFP_R and was assembled
into Stul-digested pBIC_mEGFP_Cter to obtain pBIC_GT3a_mEGFP. The
sequence encoding carboxy-terminally mEGFP-fused GT-3A was ampli-
fied from pBIC_GT3a_mEGFP by PCR using a primer pair (35Sp_HiFi_F
and 35Ster_HiFi_R) and was then assembled into Xhol/Xbal-digested
pWAT206 to obtain pWAT206_GT3a_mEGFP. A. thaliana Col-0 plants
were transformed using Agrobacterium tumefaciens GV3101 (pMP90,
pSoup) with pWAT206_GT3a_mEGFP as previously described®. Two
independent Basta-resistant transgenic lines were used for bacterial
growthassays withabioluminescent P. syringae pv. tomato DC300043
strainand for lesion development analysis using C. higginsianum MAFF
305635. Plants were grown in a climatic chamber with a temperature
of 22 °C, 60% relative humidity and light intensity of 6,000 lux (about
100 pmol m™?s™) for 10 h. Bacterial suspensions at OD4,, = 0.001 in
sterile water were syringe-infiltrated into leaves of 4-5-week-old plants.
Bacterial growth was measured as bioluminescence using a GloMax
Navigator Microplate luminometer (Promega) as previously described*.
For lesion development analysis, leaves of 4-5-week-old plants were
drop-inoculated with a 5 pl conidial suspension of C. higginsianum
(1x10° conidia per ml). The inoculated plants were kept under high
humidity in a climatic chamber with a temperature of 22 °C and light
intensity of 6,000 lux for 10 h. Lesion size was measured at 6 days after
inoculation using Image].

Generation of gt3a-KO plants

The gt3a-KO plants were created by genome editing with CRISPR-Cpf1.
The plasmid pWAT235-Cas9-HF-cc was provided by A. Takeda. The CpfI
sequence was amplified from pY004 (Addgene, 69976) by PCR using a
primer pair (Spel-NLS-Cpfl-F and BamHI-NLS-Cpf1-R; Supplementary
Table 2), followed by digestion with Spel and BamHI. The digested
DNA fragment was ligated to pWAT235-Cas9-HF-cc, which had been
digested with Spel and BamHI, resulting in pWAT235-Cpfl-cc. Two
PCR fragments were amplified from pWAT235-Cpfl-cc using primer
pairs Gb-ccdB-F and Gb-ccdB-R, and Gb-U626-F and Gb-U626-R.
These PCR fragments and Bsal-digested pWAT235-Cas9-HF-cc were
assembled into a single plasmid using a HiFi DNA assembly kit, which
resulted in pWAT235-Cpf1-U626-cc-polyT. Two oligonucleotides,
GT3a_gRNA2_F and GT3a_gRNA2_R, were hybridized and ligated to
Bsal-digested pWAT235-Cpfl1-U626-cc-polyT, which resulted in pWA
T235-Cpfl-U626-GT3a-gRNA2-polyT. A. thaliana Col-0 plants were
transformed using A. tumefaciens GV3101 (pMP90, pSoup) with
pWAT235-Cpfl-U626-cc-polyT as previously described*®. A transgenic
line with a premature stop codon due to a 5-bp deletion in the GT-34
gene was selected and used throughout this study.

Bulk RNA-seq of plants

Leaves of wild-type plants and one of the transgenic lines expressing
GT-3A-mEGFP were syringe-infiltrated with water or DC3000 at an
0Dy, 0f 0.001 and were collected 24 h after infiltration. Total RNA
was extracted using TRIReagent (Sigma). One microgram of total RNA
was used for library preparation using the BrAD-seq method to cre-
ate strand-specific 3’ digital gene-expression libraries*. The libraries
were sequenced on a DNBSEQ-G400 platform at BGI, which produced
100-bp end reads. Because the quality of reverse reads was poor due
to the poly(A) sequence, only forward reads were used for analysis.
Trimming of the first 8 bases and adaptors and quality filtering were



performed using fastp (v.0.19.7)* with the parameters -x-f8-q 30 -b 50.
The trimmed and quality-filtered reads were mapped to the Arabidop-
sis genome (TAIR10) using STAR (v.2.6.1b)*” with default parameters
and transformed to a count per gene per library using featureCounts
(v.1.6.0)*8. Statistical analysis of the RNA-seq data was performed in
the R environment (v.4.1.3). Because the BrAD-seq method involves
poly(A) enrichment, mitochondrial and chloroplast genes were
excluded. Genes with mean read counts of fewer than ten per library
were excluded from the analysis. The resulting count data were sub-
jected to TMM normalization using the function calcNormFactors in
the package edgeR, followed by log transformation by the function
voomWithQualityWeights in the package limma. To each gene, alinear
model was fit using the function ImFit in the limma package. For vari-
ance shrinkagein the calculation of P values, the eBayes functionin the
limma package was used. Theresulting P values were then corrected for
multiple hypothesis testing by calculating Storey’s g values using the
function qvaluein the package qvalue. To extract genes with significant
changesinexpression, cut-offvalues of g < 0.05 and [log,-transformed
fold change| > 1were applied.

Extraction of nuclei and single-nucleus sequencing

Fresh nucleus purification buffer (NPB; 15 mM Tris pH 7.5,2 mMEDTA,
80 mMKCI, 20 mMNacl, 0.5 mM spermidine, 0.2 mM spermine, 1:100
BSA and 1:100 protease inhibitor cocktail) was prepared before the
experimentand chilled onice. Allthe subsequent procedures were per-
formed oniceorat4 °C. Twenty leaves were choppedin 500-1,000 pl
cold NPB with 1:500 Protector RNase IN with arazor blade onice for
5 min to release nuclei and then incubated in 20 mI NPB. The crude
extract of nuclei was sequentially filtered through 70-pm and 30-pm
cellstrainers (70 pm, Corning Falcon cell strainers, Corning, 08-771-2;
30 um, MACS SmartStrainers, Milteni Biotec, 130-098-458). Triton-X
and NP40 were added to the extract to a final concentration of 0.1%
each, and theextract wasincubated at 4 °C for 5 min with rotation. The
suspension was centrifuged at 50g for 3 mininaswing-rotor centrifuge
to pellet non-nucleus debris and the supernatant was recovered. The
nucleiwere pelleted by centrifugationat 500g for 5 minin aswing-rotor
centrifuge. When the pellet was green, the pellet was resuspended in
20 mINPBd (NPB with 0.1% Triton-X and 0.1% NP40) with 1:1,000 Pro-
tector RNase IN by pipetting, followed by centrifugation at 500g for
5min. When the pellet was translucent, the NPBd wash was skipped.
The pellet was then washed by resuspendingitin20 mINPB with1:1,000
Protector RNase IN and centrifuging at 500g for 5 mininaswing-rotor
centrifuge. The pellet was resuspended in 950 pl of 1x Nuclei Buffer
(10x Genomics, PN-2000207) with 1:40 Protector RNase IN and 1 mM
dithiothreitol. The suspension of nuclei was centrifuged at 50g for
3 mininaswing-rotor centrifuge to pellet non-nucleus debris and the
supernatant was recovered. This step was repeated one more time.
Theresulting nuclei were manually counted using ahaemocytometer.
Nucleiwere pelleted by centrifugationat 500gfor 5 minin aswing-rotor
centrifuge and the supernatant was removed, leaving approximately
10 pl of the buffer. Nuclei were counted again, and up to 16,000 nuclei
were used for subsequent steps. However, in most samples, we did not
load the maximum number of nuclei that the 10x Genomics kit accepts
toavoid therisk of clogging the instrument, which canresult in variable
numbers of recovered nuclei among samples (Extended Data Fig. 1b).
scRNA-seq and ATAC-seq libraries were constructed according to the
manufacturer’s instructions (10x Genomics, CG000338). scRNA-seq
libraries were sequenced using an lllumina NovaSeq 6000 in dual-index
mode with ten cycles for i7 and i5 indices. snATAC-seq libraries were
also sequenced using an lllumina NovaSeq 6000 in dual-index mode
with 8 and 24 cycles for the i7 index and the i5 index, respectively.

Single-cell multiomic analysis
Raw data processing. Sequence data were processed to obtain
single-cellfeature countsbyrunningcellranger (v.6.0.1)and cellranger-arc

(v.2.0.0) for snRNA-seq data and snATAC-seq data, respectively. For
snRNA-seq, the -include-introns option was used to align reads to the
A. thaliananuclear transcriptome built using the TAIR10 genome and
the Araport 11 transcriptome. The chloroplast genome was removed
from the reference genome for the analysis of both snRNA-seq and
snATAC-seq data. The A. thaliana TAIR10 genome was downloaded
from https://plants.ensembl.org/, and the chloroplast genome was
manually removed. The A. thaliana TAIR10 gene annotation file was
manually modified by removing chloroplast genes and replacing semi-
colonsinthe ‘gene_name’ columnwith hyphensto preventerrorsduring
cellranger-arc processing. We note that amean of 23.4% and 26.0% of
reads were mapped on the chloroplast genome in snRNA-seq dataand
snATAC-seqdata, respectively. Removing the chloroplast genome from
the reference did not affect the overall RNA and ATAC count distribu-
tion. Count data were analysed using the R packages Seurat (v.5)* and
Signac®™.

Quality control and cell filtering. Before integrating the datasets,
doublets were predicted using DoubletFinder* and filtered out. Qual-
ity control matrices for snATAC-seq were generated using amodified
version of the loadBEDandGenomeData function in the R package
Socrates®. ACRs were identified using MACS2 (ref. 53) with the fol-
lowing parameters: -g (genomesize)=0.8e8, shift=—50, extsize=100,
and --qvalue=0.05, --nomodel, --keep-dup all. The fraction of reads
mapping towithin 2 kb upstream or 1 kb downstream of the transcrip-
tion start site (TSS) was calculated. Nuclei were filtered using the fol-
lowing criteria: 200 < RNA UMI count < 7,000; RNA gene count > 180;
200 < ATAC UMI count <20,000; and fraction of RNA reads mapped
to mitochondrial genome <10%. Seurat objects of individual samples
were merged using the Merge_Seurat_List function of the scCustomize
package.

snRNA-seq clustering. snRNA-seq clustering was performed using the
R package Seurat. The cell-by-gene RNA count matrix was normalized
using SCTransform. Dimension reduction was performed using princi-
pal component analysis with RunPCA. Technical variance among sam-
ples was reduced using Harmony** using principal components (PCs)
1-20.Graph-based clustering was performed on the Harmony-corrected
PCs1-20 by first computing ashared nearest-neighbour graph using the
PClow-dimensional space (with k = 20 neighbours). Louvain clustering
(resolution =1.0) was then applied, and the clusters were projected
into an additionally reduced space using UMAP (n.neighbours=20
and min.dist=0.01).

snATAC-seq peak calling. Peaks were called independently on each
cluster defined by snRNA-seq data and then combined using the Call-
Peaks function of Signac, which uses MACS2 with the following param-
eters: effective.genome.size=1.35e8, extsize=15, shift=—75. Peak counts
were quantified using the FeatureMatrix function. Compared with
the default peak calling pipeline of cellranger-arc (24,394 peaks), this
cluster-specific peak calling approach was able to capture more peaks
(35,560 peaks), which is consistent with a previous report™.

snATAC-seq clustering. Dimensionality reduction was performed
using latent semantic indexing (LSI)*. First, the top 95% most common
features were selected using the FindTopFeatures function. Then, the
term-frequency inverse-document-frequency (TF-IDF) was computed
using RunTFIDF with scale.factor=100,000. The resulting TF-IDF matrix
was decomposed with singular value decomposition with RunSVD,
which uses the irlba R package. Technical variance among samples
wasreduced using Harmony with LSIcomponents 2-10. Graph-based
clustering was performed on the Harmony-corrected LSI components
2-20 by first computing a shared nearest-neighbour graph using
the LSI low-dimensional space (with k=20 neighbours). Louvain
clustering (resolution = 0.8) was then applied, and the clusters were


https://plants.ensembl.org/

Article

projectedintoanadditionally reduced space with UMAP (n.neighbours=
30L and min.dist=0.01).

RNA-ATAC joint clustering. The two modalities were integrated
by weighted nearest-neighbour analysis using FindMultiModal-
Neighbors of Seurat with Harmony-corrected PCs 1-20 for RNA and
Harmony-corrected LSIcomponents 2-20 for ATAC. Then, SLM (resolu-
tion =0.5) was applied and projected with UMAP (n.neighbours=30L
and min.dist=0.1).

ATAC gene activity score. ATAC gene activity score was calculated
using the GeneActivity function of Signac with extend.upstream=400.

Peak-to-gene linkage analysis. LinkPeaks of Signac was used to call
significant peak-to-gene linkage for each infection condition (mock,
DC3000, AvrRpt2 and AvrRpm1). Background-corrected Pearson’s
correlation coefficients between the gene expression of each gene
and the accessibility of each peak within 500 kb of the gene TSS were
calculated. A Pvalue was calculated for each peak-gene pair using a
one-sided z-test, and peak-gene pairs with P < 0.05 and a Pearson’s
correlation coefficient of >0.05 were retained as significant links.

Motif enrichment analysis. Motifs present in the JASPAR2020 data-
base’ for Arabidopsis (species code 3702) were used. Cluster-specific
peaks were first identified using FindMarkers of Seurat with
default parameters. A hypergeometric test was used to test for the
over-representation of motifs in the set of differentially accessible
peaks using FindMotifs of Signac. Motif plots were generated using
MotifPlot. Motif enrichment scores (motif deviation scores) of indi-
vidual TF motifsinindividual cells were calculated using chromVAR". For
theintegration of motif enrichment scores and mRNA expression, motif
namesinJASPAR2020 were matched with gene names. Motifs that could
not be uniquely associated with genes were removed from analysis.

TF target prediction. To predict genes that are regulated by a TF, ACRs
containing each TF motif were extracted. Then, genes for whichexpres-
sion correlated with these ACRs were identified. We considered genes
within 5 kb froman ACR with alinkage score of >0.1as significant candi-
dates. GO enrichment analysis was performed for these candidates for
each TF using the enrichGO function of clusterProfiler with org.At.tair.
db annotation. For the analysis in Fig. 2h, a more stringent threshold
(linkage score > 0.2) was applied. GO enrichment plots were created
using ggplot2 (ref. 57).

Subcluster analysis. Nuclei with the same subcluster label were
aggregated, and log,-transformed transcripts per million (TPM)
values were calculated. Subclusters with more than 18,000 undetected
genes wereremoved from the analysis. For the subclusters that passed
the filtering step, genes were clustered using k-mean clustering with
k=12 (determined using the elbow method) (Extended Data Fig. 3b).
Then, GO enrichment analysis was performed for the genes in each
cluster (Extended Data Fig. 3b). Three clusters (1, 5 and 8) showed
enrichment of animmunity-related function (responses to SA); genes
inthese clusters were defined as ‘putativeimmune genes’ and used for
downstream analysis.

Pseudotime analysis. To calculate pseudotime, the cell-by-gene matrix
for cells annotated as mesophyll was obtained from the snMultiome
data. We used the function scanpy.tl.dpt with n_dcs=2. Pseudotime
trajectories were constructed with each mesophyll cellinmock samples
being used as a starting cell. Then, these individual trajectories were
averagedineach cellto createasingle, unified pseudotime trajectory.
Heat map gene trends for a given gene were calculated by fitting a lin-
ear GAM using the pygam function LinearGAM withs (0, lam=400) to
fita GAM to RNA expression levels across sorted pseudotime values.

Comparisons between PRIMER and bystander cells

Amongthe subclusters ofimmune-active mesophyll cells in the snMul-
tiome data, PRIMER and bystander cell clusters were defined on the
basis of expression of the marker genes BON3and ALD1, respectively.
By comparing these cell states, DEGs were identified using the Find-
Markers function of Seurat. Motif enrichment analysis was performed
on ACRs within 2 kb of the cell-state-enriched DEGs.

To assess the contribution of CAMTA3 in different cell states, genes
regulated by CAMTA3 were first identified using a published bulk
RNA-seq dataset®, comparing wild-type and camta3-D (a dominant
negative mutant of CAMTA3). Genes suppressed by CAMTA3 after ETI
(triggered by AvrRpm1or AvrRps4 infection) were overlapped with the
cell-state DEGs defined above. Hypergeometric tests were performed
to assess the significance of the overlaps.

snRNA-seq analysis of gt3a-KO plants

snRNA-seq was performed on gt3a-KO plants infected by AvrRpt2 or
treated with water (mock) at 9 and 24 h.p.i. Twoindependent replicates
were prepared for eachinfection condition. The datawere filtered using
the same criteria as for the snMultiome analysis without considering
ATAC-seqinformation. The gt3a-KO snRNA-seq data were integrated
with the Col-0 snMultiome data (mock and AvrRpt2 conditions), and
denovo clustering was performedin the same way as described above.
On the basis of immune-gene expression, immune-active mesophyll
clusters wereidentified and further subclustered. From these subclus-
ters, PRIMER and bystander cells were defined on the basis of expression
of the marker genes BON3 and ALDI, respectively. For each cell state,
DEG analysis was performed comparing Col-0 and gt3a-KO plants to
assess the effect of the GT-34 mutation.

Comparisons between single-cell and bulk omics datasets

Our snATAC-seq data were compared with published bulk ATAC-seq
dataof matureA. thalianaleaves activating pattern-triggered immunity
(PTI), ETl or both PTI and ETI, as well as non-immune-active leaves'.
AllACRs identified in the bulk ATAC-seq datasets were combined and
compared with the ACRs identified in our snATAC-seq datasets.

MERFISH

MERFISH panel design. We curated 500 target genes thatincluded the
following genes: (1) previously defined markers of A. thalianaleaf cell
types’®; (2) genesinvolved in various processes such asimmunity, hor-
mone pathways and epigenetic regulation; and (3) avariety of TFs pre-
viously analysed using DAP-seq (a TF-DNA interaction assay)®. Genes
for which more than 25 specific probes could not be designed based on
probe design software from Vizgen were excluded fromthe target gene
panel. Highly expressed genes could cause the overcrowding of smFISH
signals and hinder MERFISH quantification. Toavoid including highly
expressed genes in the panel, we assessed target gene expression by
usinga publicly available bulk RNA-seq dataset of A. thalianainfected
by AvrRpt2inthe samesetup as the current study at eight different time
points(1,3,4,6,9,12,16 and 24 h)*°. For each gene, the highest expres-
sion value among the eight time points was used. Genes that showed
TPMvalues of >710 were notincluded in the panel. The total TPM of the
500 genes was approximately 22,000. /CS1 was targeted with a single
round of smFISH as this gene is highly expressed. The smFISH result
was provided as animage without quantitative information. Bacterial
cellswerevisualized by targeting 19 highly expressed genes (based on
previously published in planta bulk RNA-seq data®®) as a single target.
Supplementary Table1hasalist of the genes targeted by MERFISH. All
the probes were designed and constructed by Vizgen.

Tissue sectioning, fixation and mounting. Plants were grown
according to the methods described above. Leaves matching the afore-
mentioned treatments and time points were excised and immediately



incubated and acclimated in OCT (Fisher) for 5 min. Following incuba-
tion, the leaves were immediately frozen as previously described®.
Tissue blocks were acclimated to-18 °Cina pre-cooled cryostat cham-
ber (Leica) for 1h. Tissue blocks were trimmed until the tissue was
reached, after which 10-pm sections were visually inspected until the
region ofinterest was exposed. Sample mounting and preparation were
performed according to the MERSCOPE user guide, but with slight
modifications. Inbrief, a10-pum section was melted and mounted onto
aroom-temperature MERSCOPE slide (Vizgen, 20400001), placed into
a60-mm Petridishand re-frozenby incubationin the cryostat chamber
for 5 min. Subsequent steps were performed with the mounted samples
in the Petri dish. The samples were then baked at 37 °C for 5 min and
were incubated in fixation buffer (1x PBS and 4% formaldehyde) for
15 min at room temperature. Samples were then washed with 1x PBS
containing1:500 RNase inhibitor (Protector RNase inhibitor, Millipore
Sigma) for 5 minatroomtemperaturein triplicate. Following the final
PBS wash, samples were dehydrated by incubation in 70% ethanol at
4 °Covernight.

MERFISH experiment. Tissue sections were processed following
Vizgen’s protocol. After removing 70% ethanol, the sample was in-
cubated in the sample prep wash buffer (PN20300001) for 1 min and
thenincubated in the formamide wash buffer (PN20300002) at 37 °C
for30 min. After removing the formamide wash buffer, the sample was
incubated in the MERSCOPE Gene Panel mix at 37 °C for 42 h. After
probe hybridization, the sample was washed twice with the forma-
mide wash buffer at 47 °C for 30 min and once with the sample prep
wash buffer at room temperature for 2 min. After the washing step, the
sample was embedded in hydrogel by incubationin the gel embedding
solution (gel embedding premix (PN20300004),10% (w/v) ammonium
persulfatesolutionand N,N,N',N'-tetramethylethylenediamine) at room
temperature for 1.5 h. Then, the sample was cleared by firstincubating
itin digestion mix (digestion premix (PN20300005) and 1:40 protector
RNase inhibitor) at room temperature for 2 h, followed by incubation
inthe clearing solution (clearing premix (PN 20300003) and protein-
ase K)at47 °Cfor24 handthenat37 °Cfor 24 h. The cleared sample was
washed twice with the sample prep wash buffer and stained with DAPI
and PolyT staining reagent at room temperature for 15 min. Samples
were then washed with the formamide wash buffer at room temperature
for10 minand rinsed with the sample prep wash buffer. The sample was
imaged usinga MERSCOPE instrument, and detected transcripts were
decoded onthe MERSCOPE instrument using acodebook generated by
Vizgen. Transcripts were visualized using Vizgen’s Visualizer.

MERFISH segmentation and processing. Cell-boundary segmenta-
tion was performed for each MERSCOPE data output. DAPI-targeting
and poly(A)-targeting probes demonstrated variable success in stain-
ing nuclei and cytoplasm, respectively, depending on the samples
and tissue regions examined (Fig. 3b and Extended Data Fig. 7e show
failed and successful segmentation, respectively). By contrast, dense
transcript areas marked nucleus locations more robustly (Extended
Data Fig. 7e). Therefore, a transcript-based segmentation method
was used. For each sample, a two-dimensional Numpy array of zeroes
was generated, which modelled the total pixel areaimaged. The coor-
dinates of identified RNA transcripts were changed from O to 1in this
array. Next, the array was blurred using the cv2.GaussianBlur func-
tionin OpenCV with ksize=(5,5). The resulting array was chunked into
2,000 x 2,000 pixel regions. These regions were loaded into Cellpose®,
adeep-learning-based segmentation tool, and a custom segmentation
modelwas trained by manually segmenting nucleus objects across ten
2,000 x 2,000 pixel regions in the Cellpose GUI.

The custom model was then used to predict the segmentation bound-
ariesinall the remaining regions, with the parameters diameter=22.92,
flow_threshold=0.7 and cell probability threshold=-2. Next, the total
number of cells in an experiment was calculated by summing the

number of unique cells across all regions. This number was then used
toinitialize the --num-cells-init command in another segmentation tool,
Baysor®, which considers the joint likelihood of transcriptional compo-
sition and cell morphology to predict cellboundaries. Baysor was run
using adownloaded Dockerimage and parameters -s 250, --n clusters1,
-i1,--force-2d, min-molecules-per-gene=1, min-molecules-per-cell=50,
scale=250, scale-std="25%", estimate-scale-from-centers=true,
min-molecules-per-segment=15, new-component-weight=0.2,
new-component-fraction=0.3.

To test the quality of our transcript-based segmentation method,
we used an FOV with successful DAPI staining (which was rare in our
samples) and performed DAPI-based watershed segmentation and
transcript-based segmentation (Extended Data Fig. 7d). Results from
these two segmentation strategies agreed with each other in general,
with the transcript-based approach capturing transcriptsin the cyto-
plasm in addition to those in the nucleus (Extended Data Fig. 7d-f).
This result indicated that our segmentation approach can reliably
capture cells.

After Baysor segmentation, a cell-by-gene matrix was created from
the transcript cell assignments. Cells with fewer than 50 assigned
transcripts were removed. Scanpy was used for post-processing of
our MERFISH experiments. After loading the respective cell-by-gene
matrixintoanAnndataobject for each experiment, we stored the spatial
coordinates of each cell obtained from Baysor. Theindividual transcript
countsin each cell were normalized by the total number of transcript
counts per cell. The Anndata cell-by-gene matrix was then log-scaled.

MERFISH-snMultiome data integration and label transfer. To inte-
grate the MERFISH experiments with each other, we used FindIntegra-
tionAnchors followed by the IntegrateData functionin Seurat (v.5). To
integrate the MERFISH experiment data with our snMultiome data, we
integrated the corresponding time pointsin each modality separately.
Foreachtimepointintheinfection data(mock, 4, 6,9 and 24 h), we used
gimVI from scvi-tools to project both the snMultiome and MERFISH
cells into the same latent space using their RNA expression counts.
gimVIwastrained over 200 epochs with asize 10 latent space for each
time point. To transfer continuous observations (pseudotime, RNA
and ATAC gene activity counts, and motif enrichment) from the snMul-
tiome data to the MERFISH data, we assigned the numerical average
of the nearest 30 snMultiome cells in the gimVI latent space for each
MERFISH cell. Similarly, to transfer categorical observations, including
cell types and cluster labels, we assigned each MERFISH cell the most
common label in the set of its 30 nearest snMultiome cells. To plot
the joint embedding of both modalities (MERFISH and snMultiome)
for a single time point, we ran UMAP on the gimVlI latent space with
n_neighbors=30 and min_dist=0.1. Note that in the spatial mapping of
celltypes predicted in snMultiome (Fig. 4c), although the section was
inthe middle of the leaf, some epidermal cells were included because
the section was not completely flat.

smFISH quantification and bacterial colony identification. Quan-
tification of transcripts labelled by smFISH was performed using the
Python package Big-FISH. Seven z planes of MERSCOPE smFISH images
were projected into two dimensions by using numpy.max along the
zaxisand chunked into 2,000 x 2,000 regions. Spots were then called
using the function bigfish.detection.detect_spots with threshold=50,
spot_radius=(10, 10) and voxel_size=(3, 3). To identify bacterial colo-
nies, bigfish.detection.detect_spots was called tolabel ‘bacterial meta
gene’locations with threshold=200, log_kernel_size=(1.456,1.456) and
minimum_distance=(1.456, 1.456). To account for autofluorescence
from the plant tissue, the same spot-caller was used to call spots on
DAPland /CS1 channels. The spots fromall three channels were aggre-
gated, and DBSCAN from scikit-learn.cluster was used on all spots with
eps=35and min_samples=5. We kept all DBSCAN clusters for which the
DAPIland /CS1spots constituted less than 30% of the total cluster spots.
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These remaining clusters represented potential bacterial colonies.
We manually evaluated each cluster to merge those marking the same
colony and removed the clusters marking obvious autofluorescence,
for example, signals from stomata. Windows of 300 x 300 pixels were
generated around each final cluster, and detect_spots was used with
threshold=95, spot_radius=(17,17) and voxel_size=(3, 3) for accurate
quantification of individual bacteria per cluster.

Bacterial neighbourhood analysis. To determine the level of immunity
of the neighbourhood around each bacteria colony, we identified the
1-1,000 nearest cells in proximity to the colony. Then, the smoothed
imputed pseudotime values of these neighbouring cells were averaged
toobtainasingle mean pseudotime value for each neighbour size. Error
curves were calculated using the standard error divided by the mean
at each neighbourhood size. These values serve as indicators of the
overallimmunity level of the area around each colony.

Spatial differential expression analysis. To identify genes that are
spatially associated withimmune-rich areas (related to Fig. 5a), we first
smoothed our imputed spatial pseudotime over the spatially nearest
100 cells to find areas ofimmune-active hotspots. We then used RCTD%*
to deconvolve doublets in our spatial data using the cell types in our
snMultiome data as areference. We created a reference object with
min_umi = 15and ran RCTD on our MERFISH data with the parameters
gene_cutoff=0.0001, gene_cutoff reg=0.0001, fc_cutoff = -3, fc_cutoff_
reg =-3and doublet_mode = ‘doublet’. We thenran C-SIDE* of spacexr
with run.CSIDE.single with cell_type_threshold = 0 to find the top spa-
tially differentially expressed genes per cell type along the smoothed
spatial pseudotime (explanatory variable) and plotted the negative
log-transformed Pvalue against the log-transformed fold change.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allinformation supporting the conclusions are provided with the paper.
The single-cell and bulk sequencing data generated in this study have
been deposited in the National Center for Biotechnology Information
Gene Expression Omnibus database (accession numbers GSE226826
and GSE248054). Reference genomes, annotation and fully processed
datafor snMultiome analyses are available from the Salk website (http://
neomorph.salk.edu/download/Nobori_etal_merfish). The MERFISH
data are available from the Salk website (http://plantpathogenatlas.
salk.edu). Genes targeted using MERFISH are listed in Supplementary
Table 1. Information about primers used in this study is provided in
Supplementary Table 2. Source data are provided with this paper.

Code availability
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GitHub (https://github.com/tnobori/snMultiome and https://github.
com/amonell/Spatial_Plant_Pathogen_Atlas).
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1| Quality control of snMultiome data. a, Violin plots
showing transcripts per nucleus, genes per nucleus, ATAC reads per nucleus,
and accessible chromatin regions (ACRs) per nucleusin eachsample.b, The
number of cells per sample. Two independent replicates were analyzed and
combined for Mock and AvrRpt2 9 hpi conditions. ¢, Density scatterplots

showing fractionreadsin peaks (FRiP) score in each sample before cell filtering.

x-axis:log,, transformed read depths. y-axis: fraction of TnSintegration sitesin
ACRs. d, Density scatterplots of log,, transformed read depths (x-axis) by the
fraction of TnSintegration sites mappingto within2 kb upstream and 1 kb
downstream of transcription start sites (TSSs) (y-axis). Datain each sample
before cell filtering is shown. c-d, Two replicates of Mock and AvrRpt29 h
conditions were combined. e, Bar plot showing the number of ATAC-seq peaks
identified in previous bulk ATAC-seq dataand the present snATAC-seq data.
Shared and assay unique peaks are showninblue and red, respectively.

f,Sample-aggregated chromatin accessibility around ACTIN2 (left) and /CS1
(right). g, Principle component analysis of pseudobulk transcriptome of each
sample.Independentreplicates of Mockand AvrRpt2 9 hwerelabeled. h, Scatter
plots comparing pseudobulk transcriptomes of Mock and AvrRpt2 9 hsamples.
Pearson’s correlation coefficient values were shown. i, Stacked bar plots showing
therepresentation of gene expression-based Leiden clustersineach sample.

Jj, Two-dimensional embedding of chromatin accessibility similarity among
nuclei from all samples with uniform manifold approximation and projection
(UMAP). Nucleiare colored by Leiden clusters. k, UMAP embeddings based on
ajointneighbor graphthatrepresentsboth gene expression and chromatin
accessibility measurements. Nuclei are colored by de novo Leiden clusters
based onthejointanalysis (left) and Leiden clusters defined by gene expression
measurementalone (right; Fig. 1b).
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Extended DataFig. 3 |See next page for caption.



Extended DataFig. 3| Comprehensive characterization of distinct cell
populations. a, Heatmap showing pair-wise correlation of pseudobulk
transcriptomes between sub-clusters of individual clusters. The top and side
bars show major cluster labels. b, (Left) Schematic workflow for the selection
of highly variableimmune-related genes. First, genes that are significantly
enrichedinatleastone of major or sub clusters were selected. Then, these
geneswere clustered based on pseudobulk expression of sub-clusters using
k-mean clustering (k value was determined by the elbow method), followed
by GO enrichment analysis of each k-mean cluster. Finally, gene clusters with
enriched immunity-related GO terms were selected. (Right) Top GO terms
enrichedin12k-mean clusters. Clusters1,2,and 10 were selected asimmune
genes. ¢, Heatmap showing normalized expression ofimmune-related genes
selectedin (b) acrossall the sub clusters. The top barsindicate cell type and
major cluster thateachsub-cluster derived from. d, Expression of the phloem

companion cell markers SUC2and FTIP1. e, Expression of ALDI and FMOL.f,
Expression of ILL6 uponinfection of AvrRpt2 in time course, showing specific
inductionincluster 6. g, Expression of genes specifically expressed in sub-
cluster 6-8. h, Heatmap showing expression ofimmune-related genes shownin
Fig.1dinaprevioustime-course bulk RNA-seq study, where A. thalianaleaves
wereinfected by DC3000, AvrRpt2, or AvrRpmlor treated with mock control
(water). These datado not capture the presence of various cell populations
identified in Fig.1d. i, Scatter plots showing the correlation between CRK12

and CRK41inthe time course bulk RNA-seq (top) and single-nucleus RNA-seq
(snRNA-seq; bottom). For snRNA-seq analysis, pseudobulk gene expression
dataofthe subclusters (shownin c) were used. j, Expression of CRK12 and CRK41
uponinfectionwith AvrRpmlasshowninthe UMAP. These apparently correlated
genesinbulk RNA-seqshowed a highly different expression patternatthe
single-celllevel.
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Extended DataFig. 4 |Linking gene expression and chromatin accessibility
atthesingle-celllevel. a, Schematic diagram of linked accessible chromatin
regions (ACRs) andagene. An ACRand ageneare “linked” whenthereisa
significant correlation between chromatin accessibility and mRNA expression
acrossindividual cells. b, Density plot showing the frequency of linkages
atdifferentdistances from the transcription startsites (TSSs). ¢, Heatmap
showing the linkage score (Pearson correlation coefficient between ACR count
and mRNA expression) for genes that showed at least one significant link in at
leastone oftheinfection conditions or Mock. Whena gene had multiple links,
the maximum linkage score was shown. The sidebar shows the k-mean cluster

annotation (thek value was determined by the elbow method). d, Expression of
mRNA encoding VSP2, UGT85A1, and MAMI. e,f, Cluster-aggregated chromatin
accessibility surrounding CBP60g (e) and ATIG56660 (f). Violin plots on the
sideshow aggregated mRNA expression of each gene. Both genes were highly
expressedina cell-specific manner, but only CPB60g showed correlated
(linked) chromatin accessibility patterns. g,h, Top motifsenriched inthe
promoter regions (2 kb upstream from the TSS) of defense genes (markers of
immune-active mesophyll and epidermis clusters 3,4,7,11,and 12) that are
linked (g) and not linked (h).
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Extended DataFig.5|Links between transcriptome and chromatin
accessibility. a, Scatter plot showing the distribution of the linkage score
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k-mean cluster shownin (Extended Data Fig. 4c). Adjusted p-values froma
one-sided hypergeometric test followed by Benjamini-Hochberg correction
areshown. ¢, Density plot showing the frequency of linkages at different
distances from TSS for cluster marker genes and non-marker genes. d, Density
plotshowingthe frequency of the size of ACRs for linked or non-linked genes.
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e, Density plot showing the frequency of genes with different numbers of linked
ACRs.f, Schematic diagram of the ATAC activity analysis. For each gene, ATAC
reads mapped onthe genebody orthe400 bp upstreamregionwere aggregated
to calculate the score. g, Scatter plot showing the relationship between the
number of linkages (x-axis) and RNA-ATAC activity correlation score (y-axis).

h, Scatter plot showing the relationship between the maximum correlation
coefficientbetween each gene and linked ACRs (x-axis) and RNA-ATAC activity
correlation score (y-axis).



Article

GO terms
enriched in TF targets

Extended DataFig. 6 |Identification of TF-gene modules. a,bHeatmaps
showing (a) enrichmentscores of 465 motifs and (b) expression of corresponding
transcription factors (TF) ineach nucleus. The top bars show cluster annotation
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7 | MERFISH data analysis. a, Example raw images of

MERFISH that capture the sameregion of tissue across three imaging rounds.

White spots are signals derived from single mMRNA molecules. We observed
similarresultsin allindependent samples. b, Two-dimensional plots of all the
transcripts detected by MERFISH in each sample. The number of transcripts
isshown. ¢, Spatial expression pattern of ALDI detected by MERFISH in each
sample.d, (Left) A field of view (FOV) that shows obscure DAPI nuclei staining

signal. (Middle) Transcript-based segmentationin the same FOV (see Method).

Transcripts were colored by assigned cells. (Right) Centroids of cells detected

by the transcript-based segmentation (red dots) and the result of failed DAPI-
staining-based segmentation (yellow region). Similar patterns were observed
across FOVs and samples. A systematic quantitative analysisis provided in (f).
(a,d)Scalebars =40 pm.e, f, The fraction of transcriptsin Cellpose-segmented
cells fell within Baysor-segmented cells. (e) Cells detected in the field of view (FOV)
shownin (d) were used. (f) Cells detected in 100 FOVs were used. g, Integrated
UMAP of all MERFISH data. h, Spatial mapping of de novo MERFISH clusters
annotated as vasculature.b,c,h Scalebars=1mm.
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Extended DataFig. 8| Spatial mapping of whole transcriptome and
epigenome. a, Imputed mRNA expression of ALDI (Top) predicted its mRNA
expression pattern measured with MERFISH (Bottom). Magnified images are
shownontheright.b, Imputed mRNA expression of ICSI (Top) predicted its
mRNA expression pattern measured with smFISH (Bottom). Magnified images
areshownontheright. c,Imputed ATAC activity (Extended Data Fig. 5f) of
ICSI1 (top) and ALDI (bottom), which showed consistent patterns with mRNA
expression (a,b).d, Imputed motif enrichment scores of HsfB2b (Top) was
consistent with mRNA expression of HsfB2b confirmed by MERFISH (Bottom).
e, Spatial mapping of pseudotime values based on dataintegration and label
transfer between snRNA-seqand MERFISH data of DC3000-infected plants.

f,smFISH of ICSIinleavesinfected by AvrRpt2 or DC3000 at 24 hpi. g, Spatial
mapping of bacterial transcripts detected withsmFISH in plantsinfected by
AvrRpt2 (left) and DC3000 (right) at 24 h post-infection (hpi). Pseudotime
values are also visualized in the background. Dot size reflects the number of
bacterial transcripts detected. a-g, Scalebars=1mm. h, Scatter plot showing
the number of bacterial transcripts (x-axis) and averaged pseudotime values
of five nearest neighbor plant cells (y-axis) for each bacterial colony in plants
infected by AvrRpt2 (blue) and DC3000 (red) at 24 hpi. i, Averaged pseudotime
scores of cells surrounding each bacterial colony. The x-axis shows the number
of nearest plant cellsanalyzed for each bacterial colony. Shaded error bands
indicate standard error of the mean.
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Extended DataFig. 9| Characterization of PRIMER and bystander cells.

a, Heatmaps showing expression of ALDI, FMO1,and BON3in each cell at 9 hpi.
b, Expression of BON3showninthe UMAPin Figs.4aand 5d. BON3 expressionis
enrichedincellswith the highest Pseudotime scores. ¢, Expression of WRKY8
and LSDIinthesub-clusters of clusters 3,7, and 11in the snRNA-seq data (Fig. If).
d, Violin plot showing expression PUB36 in the PRIMER cell cluster of WT and
GT-3Aknockout (gt3a-KO) plants. The gene model of PUB36, ATAC-seq peaks,
and a GT-3A binding motifare shownbelow. e, GO enrichment analysis of genes
downregulatedinabystander cell cluster of gt3a-KO compared to WT. Adjusted
p-values fromaone-sided hypergeometric test followed by Benjamini-Hochberg
correctionare shown. f, Violin plot showing expression of ALDI inabystander
cluster.d-f, Twoindependentreplicates of each sample were analyzed with
single-nucleus RNA-seq. g, Expression of BON3and GT-3Ain cellsin mock (top)

or DC3000-infection (bottom) condition. h, Expression of ICSIin cellsinfected
by AvrRpt2.c,g,h, All time points were combined. i, Motif activity of GT-3A
inimmune-active mesophyllcells. j, Lesion area created by Colletotrichum
higginsianuminfectionin Col-0 and twoindependent GT-34 overexpression
lines and pad3 mutant at 6 days postinoculation. Different letters indicate
statistical significance (adjusted P < 0.01). Adjusted p-values were calculated
with two-tailed Student’s t-test followed by Benjamini-Hochberg method.
n=45,35,30,and 51leaves for WT, GT-34-0x1, GT-3A-0x2, and pad3, respectively,
fromthreeindependentreplicates. Results are shown as box plots with boxes
displaying the 25th-75th percentiles, the centerlineindicating the median,
whiskers extending to the minimum, and maximum values no further than
1.5interquartile range. k, The gene models of CBP60gand SARDI with ATAC-seq
peaks and GT-3A binding motifs.
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All information supporting the conclusions are provided with the paper. The single-cell and bulk sequencing data generated in this study are deposited in the
National Center for Biotechnology Information Gene Expression Omnibus database (accession no. GSE226826 and GSE248054). Reference genome, annotation,
fully processed data for snMultiome analyses are available at neomorph.salk.edu/download/Nobori_etal_merfish. The MERFISH data are available at
plantpathogenatlas.salk.edu. Genes targeted with MERFIHS are listed in Supplementary Table 1. Information of primers used in this study is provided in
Supplementary Table 2. Source data are provided with this paper. Reference genome, annotation, fully processed data for snMultiome analyses are available at
neomorph.salk.edu/download/Nobori_etal_merfish.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine sample size. Instead, sample sizes were determined based on a combination of factors, including
standard practices in plant biology research and the objectives of the experiments. For the pathogen growth assay, we selected sample sizes
based on their effectiveness in previous similar studies in the field (such as PMID: 35545668, PMID: 37704725, and PMID: 35508659). For the
snMultiome and MERFISH time course experiments, we primarily analyzed one replicate for each condition. Second replicates of snMultiome
were performed for key conditions, which is a similar setup with a recent time course single-cell RNA-seq study (PMID: 36996230). In addition,
we used two different pathogens known to induce similar responses and used matching conditions for independent snMultiome experiments,
further ensuring the reproducibility of our data. Although the MERFISH experiments were performed with single replicates, the sample
conditions match those of the snMultiome experiments, allowing cross-validation of conclusions from these orthogonal analyses. Therefore,
we believe that the sample sizes used for snMultiome and MERFISH experiments are sufficient to support the conclusions of this study.

Data exclusions  No data was excluded for the analyses in this study.

Replication For pathogen growth assays and bulk RNA-seq, three to four independent replicates were analyzed for each condition. Two independent
replicates were analyzed for snMultiome for Mock and AvrRpt2 9 hr samples. No replicate was used for MERFISH time course analysis.

All attempts at replication reported were successful.
Randomization  Plants were grown in the same tray to ensure consistent environmental conditions. Individual plants were then randomly assigned to different
treatment groups. This random allocation was employed to minimize selection bias and distribute any uncontrolled variables evenly across all

treatment groups.

Blinding In pathogen infection assays, certain treatments produce visible disease phenotypes, making it impossible to conceal the treatments applied.
To minimize potential biases, we implemented consistent experimental protocols and standardized analysis pipelines for all samples.
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