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A rare PRIMER cell state in plant immunity

Tatsuya Nobori1,2,3,6, Alexander Monell1,4, Travis A. Lee1,2,3, Yuka Sakata5, Shoma Shirahama5, 
Jingtian Zhou2,4,7, Joseph R. Nery2, Akira Mine5 & Joseph R. Ecker1,2,3 ✉

Plants lack specialized and mobile immune cells. Consequently, any cell type that 
encounters pathogens must mount immune responses and communicate with 
surrounding cells for successful defence. However, the diversity, spatial organization 
and function of cellular immune states in pathogen-infected plants are poorly 
understood1. Here we infect Arabidopsis thaliana leaves with bacterial pathogens  
that trigger or supress immune responses and integrate time-resolved single-cell 
transcriptomic, epigenomic and spatial transcriptomic data to identify cell states.  
We describe cell-state-specific gene-regulatory logic that involves transcription 
factors, putative cis-regulatory elements and target genes associated with disease  
and immunity. We show that a rare cell population emerges at the nexus of 
immune-active hotspots, which we designate as primary immune responder 
(PRIMER) cells. PRIMER cells have non-canonical immune signatures, exemplified  
by the expression and genome accessibility of a previously uncharacterized 
transcription factor, GT-3A, which contributes to plant immunity against bacterial 
pathogens. PRIMER cells are surrounded by another cell state (bystander) that 
activates genes for long-distance cell-to-cell immune signalling. Together, our 
findings suggest that interactions between these cell states propagate immune 
responses across the leaf. Our molecularly defined single-cell spatiotemporal atlas 
provides functional and regulatory insights into immune cell states in plants.

Interactions between hosts and microorganisms are heterogeneous for 
multiple reasons. Multicellular host tissues are composed of diverse 
cell types that have distinct capacities to respond to microorganisms, 
and microorganisms can occupy niches heterogeneously distributed 
in the host. Moreover, individual interactions between cells may occur 
asynchronously. Thus, diverse cell states can co-exist in a tissue. Such 
heterogeneity can mask fundamental principles of cellular interactions 
when hosts and microbes are analysed at the tissue scale.

Plant–pathogen interactions have been studied to understand the 
molecular mechanisms that underlie host immunity and pathogen viru-
lence2. Single-cell RNA sequencing (scRNA-seq) of leaf protoplasts has 
revealed heterogeneous responses of plants infected by virulent bacte-
rial and fungal pathogens3,4. However, our understanding of cell-state 
diversity is largely limited to a specific cell type (the mesophyll3) infected 
by immunosuppressive virulent pathogens. Moreover, the spatiotem-
poral dynamics of plant immune responses are unclear owing to the 
low-throughput nature of transgenic reporter assays1,5. Furthermore, 
we have a limited understanding of the gene-regulatory mechanisms 
that underlie cell-state diversity, such as specific binding of transcrip-
tion factors (TFs) to cell-state-specific cis-regulatory elements (CREs). 
Single-nucleus assay for transposase-accessible chromatin followed 
by sequencing (snATAC–seq) is often used to identify potential CREs 
in individual cell types and states6, but it has not been applied to study 
plant immune responses. These gaps in knowledge represent substantial 
roadblocks to understanding how the plant immune system operates as 
a collective entity of cell populations with distinct functions1.

In this study, we aimed to fill these gaps through single-nucleus mul-
tiomic (snMultiome) and spatial transcriptomic analyses of a host plant 
infected by virulent or avirulent bacterial pathogens in a time-course 
experiment. Specifically, we use single nucleus RNA-seq (snRNA-seq), 
snATAC–seq and multiplexed error robust fluorescence in situ hybridi-
zation (MERFISH)7 and the following three bacterial pathogens:  
Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000), 
DC3000 AvrRpt2 and DC3000 AvrRpm1 (hereafter AvrRpt2 and 
AvrRpm1, respectively). DC3000 is a virulent pathogen that can sup-
press plant immunity through effectors and toxins8, whereas AvrRpt2 
and AvrRpm1 are avirulent pathogens that carry effectors indirectly 
recognized by plant nucleotide-binding domain and leucine-rich 
repeat receptors to initiate effector-triggered immunity (ETI)9–11. Our 
single-cell multidimensional atlas reveals previously uncharacterized 
cell states, including a rare cell state that emerges at the centre of ETI 
tissue regions (designated as PRIMER cells). Another cell state sur-
rounding PRIMER cells (designated as bystander cells) is described, and 
we provide insights into the functions and gene-regulatory mechanisms 
of these cell states.

Time-resolved snMultiome analysis
We generated a time-resolved snMultiome atlas of A. thaliana leaves 
infected by DC3000, AvrRpt2 or AvrRpm1 (Fig. 1a). Pathogens were 
inoculated into leaves at a low dose (optical density at 600 nm 
(OD600) = 0.001), at which only a subset of plant cells are anticipated to 
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encounter pathogen cells. Infected leaves were sampled at four different 
time points (4, 6, 9 and 24 h). As a control, we prepared plants that were 
mock-infected with water and sampled after 9 h. Two independent rep-
licates were made for the AvrRpt2-infection 9-h condition and the mock 
condition. We developed a protocol to rapidly isolate nuclei so that 
transcriptome and epigenome changes during sample preparation were 
minimized (Methods). A total of 65,061 cells from 15 samples passed 
quality control for both RNA-seq and ATAC–seq data analyses (Extended 
Data Fig. 1a–d). Our snATAC–seq data identified more accessible chro-
matin regions (ACRs) than previously reported bulk ATAC–seq data 
from immune-activated leaves12. Moreover, the datasets showed large 
overlaps, which suggests that snATAC–seq can capture both known and 
unknown ACRs (Extended Data Fig. 1e). ATAC–seq peaks associated 
with a housekeeping gene (ACTIN2) and an immune-related gene (ICS1) 
were consistently detected across replicates, which provided support 
for the high reproducibility of the snATAC–seq data (Extended Data 
Fig. 1f). Two independent replicates showed consistent transcriptional 
reprogramming caused by AvrRpt2 infection (Extended Data Fig. 1g,h), 
which further confirmed the reproducibility of our data.

Dimensionality reduction and clustering were performed using the 
snRNA-seq data. Some clusters were enriched in specific infection 

conditions and at specific time points (Extended Data Fig. 1i), which sug-
gests that the clustering analysis captured distinct cell states induced 
by pathogen infection. We identified genes specifically expressed in 
individual clusters (top markers are shown in Extended Data Fig. 2a), 
which further clarified the identity of each cluster (major cell-type 
annotations are shown in Fig. 1b). Cell types were also predicted on the 
basis of ATAC–seq data. For instance, a cluster-specific ACR (peak at 
chromosome 2 position 11172821–11173529) of clusters 0, 12, 19, 21 and 
29 was associated with FDH, a marker gene for the epidermis (Extended 
Data Fig. 2b,c; full names of genes highlighted in this study are provided 
in the Methods). Overall, the snMultiome data classified cell types and 
states of A. thaliana leaves infected with a pathogen.

Gene ontology (GO) enrichment analysis of marker genes of each 
cluster identified mesophyll (clusters 3, 7 and 11) and epidermis (clus-
ter 12) cell populations enriched with defence-related genes, including 
those involved in the defence hormone salicylic acid (SA) pathway13 
(Fig. 1c and Extended Data Fig. 2d). These clusters were well repre-
sented in ETI conditions (AvrRpt2 and AvrRpm1 infection) (Extended 
Data Fig. 1i), which suggests that these cells were responding to the 
immune-activating pathogens. This finding was also supported by 
the strong expression of ICS1, a key gene for pathogen-induced SA 
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Fig. 1 | Identification of diverse cell states in A. thaliana leaves infected by 
bacterial pathogens. a, Schematic of the time-course snMultiome analysis.  
b, Two-dimensional embedding of nuclei from all samples by uniform manifold 
approximation and projection (UMAP) based on the transcriptomic data. 
Nuclei are coloured according to Leiden clusters. Left, major clusters. Right, 
examples of subclustering of major clusters. Cell types were annotated on the 
basis of marker gene expression. c, GO enrichment analysis for marker genes  
of each major cluster (Extended Data Fig. 2a). GO terms related to defence 
responses are shown. Adjusted P values from a one-sided hypergeometric test 
followed by Benjamini–Hochberg correction are shown. See Extended Data 
Fig. 2d for a more comprehensive analysis. d, Heat map showing normalized 

pseudobulk expression of subclusters. Well-characterized defence-related 
genes are shown. See Extended Data Fig. 3c for a comprehensive analysis.  
The top bars indicate the cell type and major cluster from which each subcluster 
is derived from. The colour scheme for the major clusters matches with b.  
e, Subclustering of major cluster 6 (PCCs). Defence-related genes showing 
subcluster-specific expression are shown. f, Schematic of subclustering of 
clusters 3, 7 and 11 (immune-active mesophyll cells). g, Expression of genes 
involved in different steps of the biosynthesis and secretion of tryptophan- 
derived secondary metabolites shown in h. h, Simplified schematic of the 
biosynthesis and secretion of tryptophan-derived secondary metabolites.
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biosynthesis14 (Extended Data Fig. 2e). We observed increased acces-
sibility to chromatin regions upstream of the ICS1 locus after infection 
by the ETI strains (Extended Data Fig. 1f), a result consistent with a previ-
ous bulk ATAC–seq study12. Together, our data captured heterogeneous 
and coordinated changes in defence gene expression and chromatin 
accessibility during pathogen infection.

Fine dissection of immune-cell states
Although the major clusters captured immune-active cells in the 
mesophyll and the epidermis (Fig. 1c), clusters for other cell types, 
such as the vasculature, contained both immune-active and non-active 
cells. This result is probably due to strong developmental signatures 
(for example, vasculature marker genes are expressed at high levels 
regardless of immune activation). To capture cell-type-specific immune 
responses, we performed a second round of clustering for each major 
cluster, which resulted in 429 subclusters with diverse transcriptome 
patterns (Fig. 1b (right) and Extended Data Fig. 3a). Analyses of selected 
immune-related genes showed both cell-type-specific gene expres-
sion and diverse expression in cell types (that is, cell-state diversity) 
(Fig. 1d). The subclustering of our snRNA-seq data revealed complex 
immune responses in leaf tissue that were not captured by bulk RNA- 
seq (Extended Data Fig. 3h). Moreover, in some cases, genes seemed to 
be highly co-expressed at the bulk transcriptome level but specifically 
expressed at the subcluster level (Extended Data Fig. 3i,j), a finding that 
further highlights the value of single-cell analyses.

A more detailed analysis of specific subclusters revealed strong 
expression of markers for phloem companion cells (PCCs) (Extended 
Data Fig. 3d) in major cluster 6. This cluster could be separated into 
12 subclusters, some of which were enriched with immune-related 
genes (Fig. 1e). Important genes for systemic acquired resistance (SAR), 
such as ALD1 and FMO1, were specifically expressed in PCC subclus-
ter 8 (Fig. 1e). This result indicates that a subset of PCCs contribute 
to sending long-distance signals to systemic leaves. Notably, we did 
not observe strong expression of ALD1 or FMO1 in other vasculature 
clusters (Extended Data Fig. 3e). ILL6 was among the marker genes 
enriched in PCC subcluster 8 (Fig. 1e and Extended Data Fig. 3f), and this 
gene is involved in SAR15. Together, these findings suggest that this cell 
population may have a role in SAR, and ILL6 may be a PCC-specific SAR 
regulator. We identified additional genes specifically enriched in PCC 
subcluster 8 but not in other major clusters (Extended Data Fig. 3g). As 
SAR requires a mobile signal that travels from locally infected leaves to 
systemic leaves through the vasculature, it is possible that the identified 
PCC population and marker genes have a specific role in SAR.

As another example of cell-population-specific immune responses, 
we analysed tryptophan-derived defence-related secondary metabolite 
pathways in immune-active mesophyll cells (clusters 3, 7 and 11) (Fig. 1f). 
Distinct expression of genes involved in different steps or pathways of 
the biosynthesis or secretion of the defence metabolites camalexin 
and indole glucosinolate was identified (Fig. 1g,h). This result indi-
cates that there is compartmentalization in the activation of defence 
pathways that can potentially compete for resources (tryptophan). 
Together, these examples highlight the diversity of plant immune-cell  
states, thereby confirming the importance of understanding immune 
signalling pathways and networks at the cell-state level.

Linking the transcriptome and epigenome
Our snMultiome data enabled us to directly compare mRNA expression 
and ACRs to identify potential CREs in different cell types, infection 
conditions and time points (Extended Data Fig. 4a). We identified a total 
of 29,002 significantly correlated (or linked) ACR–gene pairs within 
500 kb of each gene across cells in each infection condition. Most links 
were within a short distance of gene loci (<400 bp; potential promoter 
regions), whereas others were more distal (potential enhancer regions) 

(Extended Data Figs. 4b and 5a). We summarized peak-to-gene linkage 
data for each gene by using the maximum Pearson’s correlation coef-
ficient values (peak-to-gene linkage score) (Extended Data Fig. 4c). 
Genes that showed links in all the conditions (cluster 8; Extended Data 
Fig. 4c) were enriched with cell-type marker genes such as FDH, BCA2 
and MAM1 (Extended Data Fig. 4c,d). Genes that showed links specifi-
cally in ETI-activated conditions (cluster 4; Extended Data Fig. 4c) were 
enriched with immunity-related genes (Extended Data Figs. 4d and 5b). 
CBP60G, a transcriptional regulator of immunity, had multiple ACRs for 
which accessibility significantly correlated with its mRNA expression 
(Extended Data Fig. 4e). Genes that showed links specifically in DC3000 
infection (cluster 2; Extended Data Fig. 4c) were enriched with jasmonic 
acid ( JA)-related genes (Extended Data Fig. 5b). This finding is consist-
ent with the ability of DC3000 to activate the JA pathway in plants using 
the toxin coronatine and effectors to suppress plant immunity16. These 
results indicate that coordinated and cell-population-specific repro-
gramming of chromatin accessibility and gene expression is a key feature 
of leaf development, immunity and exploitation by virulent pathogens.

Although we identified many ACRs that were closely associated with 
defence genes, 48% (304 out of 627) of defence genes (marker genes of 
immune-active clusters 3, 4, 7, 11 and 12) did not show significant links 
with ACRs. Such non-linked defence genes often had constitutively 
opened chromatin (Extended Data Fig. 4f) despite cluster-specific 
changes in gene expression (Extended Data Fig. 4f, violin plot). This 
finding suggests that there is an additional layer of gene regulation, 
for example, the expression of upstream TFs. Different motifs were 
enriched in ACRs 2 kb upstream of linked and non-linked defence genes 
(Extended Data Fig. 4g,h), which suggests that some defence TFs func-
tion together with chromatin reprogramming whereas others do not.

Identifying TF–ACR–gene modules
To identify cell-type-specific and state-specific gene-regulatory mecha-
nisms, we performed motif enrichment analysis for linked ACRs specific 
to individual clusters. For instance, comparing an immune-active meso-
phyll cluster (cluster 3) and a non-immune-active mesophyll cluster 
(cluster 1) identified the enrichment of motifs for many TFs known to 
be involved in immunity, including WRKYs and CAMTAs (Fig. 2a). This 
result highlights the utility of this strategy. We extended this analysis 
to marker ACRs for all the clusters and identified cluster-specific motif 
enrichment (Fig. 2b). These findings suggest that different cell types 
and states use both shared and distinct gene regulation through TF–
DNA binding. Moreover, this approach can accelerate the identification 
of TFs with cell-type-specific or state-specific function.

To analyse motif accessibility at the single-cell level––not the cluster 
level––we calculated the motif enrichment score for each cell using 
ChromVAR17 (Fig. 2c), which revealed heterogeneous accessibility to 
465 motifs between and within clusters (Extended Data Fig. 6a). We 
then asked whether the TF motif enrichment score correlates with TF 
expression, and the results also showed heterogeneous expression 
(Extended Data Fig. 6b). We identified TFs that showed top correlations 
between motif enrichment scores and their mRNA expression in differ-
ent cell types (Fig. 2d and Extended Data Fig. 6c). For instance, WRKY46 
mRNA expression and accessibility to WRKY46-binding sites over-
lapped mainly in immune-active mesophyll and epidermal cells across 
time points (Fig. 2e). This finding suggests that the WRKY46 regulon 
has a key role during immune responses in these cell types. By searching 
for genes that are linked with ACRs containing WRKY46-binding sites 
(Fig. 2f), we identified potential target genes of WRKY46, including 
many known defence-related genes (Fig. 2g). This result is consistent 
with the known function of WRKY46 in the SA pathway and defence 
against P. syringae18. Finally, we performed target gene prediction for 
all the TFs shown in Fig. 2d and found that many TFs target genes related 
to plant defence (Fig. 2h). TFs that belong to the same family tended to 
show overlapping target genes (Fig. 2h). In addition to WRKYs, motifs 
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for TFs such as IDDs, BPC1, TGA7 and ERF7 were predicted to be involved 
in the regulation of defence-related genes (Extended Data Fig. 6d). In 
summary, our datasets identified numerous TF–ACR–gene modules 
that potentially function during pathogen infection.

Time-resolved spatial transcriptomics
To validate the cell populations identified in the snMultiome analysis 
and to characterize gene-regulatory modules in the context of tissue, we 
performed spatial transcriptomics using MERFISH7 on tissue sections of 
infected leaves (Fig. 3a and Extended Data Fig. 7a). We curated 500 tar-
get genes (Supplementary Table 1), including markers of leaf cell types, 
genes involved in processes such as immunity, hormone pathways and 
epigenetic regulation, and a variety of TFs. In addition to MERFISH, we 
performed standard single-molecule fluorescence in situ hybridization 

(smFISH; single-round imaging) on the same tissues targeting ICS1. We 
also analysed target bacterial genes to locate bacterial cells in the tissue 
section (Methods). We profiled leaves infected by AvrRpt2 at four time 
points, to match the snMultiome experiments, and mock-infected leaves 
(Fig. 3a). The spatial localization of the transcripts for 500 genes was 
decoded after the combinatorial smFISH imaging experiments, and 
we detected millions of transcripts per sample (Fig. 3b and Extended 
Data Fig. 7b). MERFISH analysis identified induction of the defence 
gene ALD1, which indicated its target specificity (Extended Data Fig. 7c).

A key step for single-cell analysis of MERFISH data is cell segmen-
tation (Fig. 3a). The standard segmentation approach using nuclear 
(DAPI) and cytoplasmic (poly(A)) staining did not provide high-quality 
segmentation results (Fig. 3b). We therefore implemented a separate 
segmentation approach based on the distribution of transcripts, 
and this strategy successfully segmented cells (Fig. 3c, Methods and 
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Extended Data Fig. 7d). After segmentation, transcripts were assigned 
to cells, which produced a cell-by-gene matrix with each cell having its 
spatial coordinates. Overall, we detected a median of 161 transcripts 
and 79 genes per cell from a total of 121,998 cells from 5 leaf sections  
(1 mock infection and 4 time points after AvrRpt2 infection) (Fig. 3d). We 
performed integration and de novo clustering of all MERFISH samples, 
which identified 14 clusters (Fig. 3e and Extended Data Fig. 7g). These 
clusters were spatially mapped in individual samples, which revealed 
spatially organized cell populations (Fig. 3e). For instance, a de novo 
MERFISH cluster captured vasculature cells in tissue sections (Extended 
Data Fig. 7h). The single-cell and quantitative gene-expression proper-
ties of MERFISH provide the opportunity to integrate spatially resolved 
MERFISH data and molecular-information-rich snMultiome data.

Integrating snMultiome and MERFISH
We integrated MERFISH and snMultiome data (five conditions matching 
the MERFISH samples; Fig. 4a) using the shared 500 genes, and cluster 
labels defined by snMultiome were transferred to the MERFISH cells 
(Fig. 4a,b and Methods). On the basis of this data integration, we spa-
tially mapped clusters defined in the snMultiome data. Major cell types 
defined by snMultiome were successfully mapped on the expected 
regions in a MERFISH tissue sample (Fig. 4c), which indicated success-
ful data integration. This integration of MERFISH and snMultiome 
data enabled us to explore the spatial distribution of cell populations 
defined in the snMultiome analysis.

Using this integrated dataset, we spatially imputed the entire tran-
scriptome and chromatin accessibility information (Extended Data 
Fig. 8a–d). Imputed ICS1 (not included in the MERFISH panel) expres-
sion accurately predicted the real spatial expression of ICS1 (based on 
smFISH) (Extended Data Fig. 8a,b), a result that confirmed the accuracy 
of data imputation. We also spatially imputed ATAC activity scores 
(Extended Data Fig. 5f) of ICS1 and ALD1, and these showed consistent 
patterns with mRNA expression (Extended Data Fig. 8c). The motif activ-
ity of HSFB2b was predicted to be high in the immune-active regions of 
a leaf at 24 h post inoculation (h.p.i.) (Extended Data Fig. 8d), which was 
consistent with the mRNA expression pattern of HSFB2b validated by 
MERFISH (Extended Data Fig. 8d). Overall, these results indicate that 
spatial data imputation of the transcriptome and the epigenome was 
accurate, which enabled the analysis of gene-regulatory mechanisms at 
single-cell and spatial resolution. To facilitate exploration of our data, 
we imputed all 25,299 transcripts detected in the snMultiome analysis 
and 465 motif enrichment scores on the 5 tissues used in MERFISH 
experiments and made the data available on a data browser (https://
plantpathogenatlas.salk.edu).

Modelling immune-response dynamics
To understand the temporal dynamics of immune responses, we applied 
pseudotime analysis to our snMultiome data. Pseudotime analysis 
aligns cells as a trajectory based on their gene expression, which is com-
monly used for inferring developmental trajectories19. We proposed 
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for detailed procedures. b, Two-dimensional plots of transcripts for 16 selected 
genes (Supplementary Table 1) detected using MERFISH in each sample. Plots 
with transcripts for all 500 genes are provided in Extended Data Fig. 7b. c, Left, a 
representative field of view (FOV) that shows obscure signalling of DAPI-stained 
nuclei. Middle, transcript-based segmentation in the same FOV (Methods). 
Transcripts were coloured on the basis of assigned cells. Right, centroids of 
cells detected using the transcript-based segmentation method (red dots) and 

the result of failed DAPI-staining-based segmentation (yellow region). Similar 
patterns were observed across FOVs and samples. A systematic quantitative 
analysis is provided in Extended Data Fig. 7f. d, Violin plots showing the number 
of transcripts per cell (left) and unique genes per cell (middle) detected in each 
MERFISH sample and the area size per cell (right). e, UMAP embeddings of cells 
in each sample based on the expression of 500 genes detected using MERFISH. 
All MERFISH samples are integrated, and cells are coloured on the basis of 
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that by applying pseudotime analysis to a single developmental cell 
type with various immune states, we could better model the temporal 
dynamics of heterogeneous infection and immune responses in an 
infected leaf. Calculation of pseudotime scores for mesophyll cells 
(Fig. 4d and Methods) showed that the distribution of predicted pseu-
dotime scores in each sample was consistent with what is expected from 
the real sampling time point (Fig. 4e). That is, cells with low pseudo-
time scores were enriched at early time points, whereas cells with high 
pseudotime scores emerged at later time points. This result indicated 
that the temporal dynamics of immune responses were successfully 
modelled. Cells with a wide range of pseudotime scores coexisted at 
9 and 24 h.p.i., which suggests that cellular immune responses are 
asynchronous in infected leaves.

To understand the spatial distribution of heterogeneous immune 
states, we spatially mapped the pseudotime scores using label trans-
fer from snMultiome to MERFISH data (Fig. 4f). The spatial mapping 
of the pseudotime scores revealed immune-active areas that were 
distributed in pathogen-infected leaf tissues in a restricted man-
ner (Fig. 4f). These immune-active areas expanded over time and 
seemed to merge at 24 h.p.i. (Fig. 4f). Notably, immune states also 
dynamically change over time in each immune-active area, with older 
immune-active cells (higher pseudotime scores) being surrounded 
by younger immune-active cells (lower pseudotime scores) (Fig. 4f). 
These results indicate that the oldest immune-active cells are prob-
ably plant cells that had direct contact with pathogen cells at early 
time points and that immune responses spread to surrounding cells 
through cell–cell communication over time.

Spatial mapping of bacteria
We sought to investigate whether spatially restricted immune-gene 
expression can be explained by the distribution of bacterial cells. 
smFISH targeting bacterial metagenes (19 highly expressed genes) 
detected bacterial colonies at 24 h.p.i., which we overlaid with the spa-
tial map of the pseudotime scores (Extended Data Fig. 8g). As a control, 

we performed another MERFISH experiment using an A. thaliana leaf 
infected by the immunosuppressive pathogen DC3000 at 24 h.p.i. 
(Extended Data Fig. 8e–g). The distribution of the immune-activating 
strain AvrRpt2 overlapped with tissue regions with high pseudotime 
scores (immune heightened) in contrast to the immunosuppressive 
DC3000 strain (Extended Data Fig. 8e–g). We confirmed this obser-
vation by quantitatively analysing the neighbouring plant cells of 
individual bacterial colonies (Extended Data Fig. 8h,i). Taken together, 
these results indicate that immune-active regions defined by the 
pseudotime analysis interact with the ETI-triggering pathogen; we 
also captured potential immunosuppression by the virulent DC3000 
pathogen.

PRIMER and bystander cells
We systematically identified genes for which expression significantly 
changed across the pseudotime trajectory in the MERFISH data using 
cell-type-specific inference of differential expression (C-SIDE)20 (Fig. 5a 
and Methods). BON3, ALD1 and FMO1 were among the genes identified 
for which expression was higher towards the centre of immune-active 
regions (Fig. 5a). BON3 was induced in highly restricted areas in the 
tissue after infection by AvrRpt2 (at 9 h.p.i.) (Fig. 5b), which was dis-
tinct from ALD1 and FMO1 (Fig. 5b–d and Extended Data Fig. 9a). Our 
subclustering analysis of snMultiome data confirmed the pattern 
observed with the MERFISH results (Fig. 5e), which indicates that we 
identified two distinct immune cell states. Expression of BON3 was 
enriched in cells with the highest pseudotime scores (that is, the old-
est immune-active cells) (Fig. 4e,f and Extended Data Fig. 9b), which 
suggests that these cells are early responders to pathogen invasion. 
Therefore, we designate this cell state as PRIMER cells, from which 
immune responses might spread. Cells surrounding PRIMER cells are 
designated as bystander cells.

PRIMER and bystander cells showed distinct transcriptional and 
epigenetic signatures. PRIMER cells were enriched in CAMTA motifs 
and a GT-3A motif, whereas bystander cells were enriched in WRKY 
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motifs (Fig. 5i and Extended Data Fig. 9i). Genes previously shown 
to be repressed by CAMTA3 were significantly overrepresented in 
bystander cells compared with PRIMER cells (Fig. 5j; false discov-
ery rate (FDR) = 5.0 × 10−46, with hypergeometric test correction 
using the Benjamini–Hochberg method), a result that supports the 
transcriptional-repressive role of CAMTA3 in PRIMER cells.

To understand the function of PRIMER cells and their gene-regulatory 
mechanisms, we investigated an snMultiome subcluster in which BON3 
was enriched (subcluster 4). Although many PRIMER cell marker genes 
were previously uncharacterized, we found several known genes, 
including WRKY8 and LSD1, as PRIMER cell markers (Extended Data 
Fig. 9c). Notably, BON3, WRKY8 and LSD1 are all negative regulators of 
immunity21–23, although the precise mechanisms of how they suppress 
immune responses remain elusive.

Further marker gene analysis of the PRIMER cell cluster identi-
fied GT-3A (which encodes a trihelix DNA-binding TF)24, the function 
of which in leaf immunity remains uncharacterized (Fig. 5f). GT-3A 
showed a spatial expression pattern similar to that of BON3 (MERFISH; 
Fig. 5g), and the GT-3A motif was highly accessible in PRIMER cells 
(snATAC–seq; Fig. 5h), which implies that it has a gene-regulatory 
function in this cell population. To understand the role of GT-3A, we 
generated transgenic A. thaliana plants that ectopically overexpress 
this gene (GT-3A-ox). Bulk RNA-seq analyses revealed impairment in 
the induction of genes involved in the SA pathway of GT-3A-ox plants 
infected by DC3000 (Fig. 5k). Furthermore, two independent lines of 

GT-3A-ox were more susceptible to DC3000 infection (Fig. 5l), which 
suggests that this previously unidentified cell-state-specific TF can 
negatively regulate immunity. We also tested plants in which GT-3A 
was knocked out (gt3a-KO), and this mutant was more susceptible 
to AvrRpt2 infection (Fig. 5m). This result indicates that GT-3A func-
tion in PRIMER cells is required for optimal defence against aviru-
lent pathogens. snRNA-seq analysis of gt3a-KO plants revealed genes 
that are potentially regulated by GT-3A, either directly or indirectly. 
Among such genes, PUB36 expression in PRIMER cells was significantly 
impaired in gt3a-KO plants at both 9 and 24 h.p.i. Notably, PUB36 has a 
GT-3A-binding motif in the upstream region (Extended Data Fig. 9d). 
SA-related genes, including ALD1, were expressed at lower levels in 
bystander cells in gt3a-KO plants than in wild-type plants (Extended 
Data Fig. 9e,f). This finding suggests that induction of GT-3A in PRIMER 
cells is important for the proper induction of defence genes in sur-
rounding cells. In summary, through the integration of time-resolved 
snMultiome and spatial transcriptome data, we identified previously 
unknown immune-cell states and a cell-population-specific TF that 
regulates plant immunity.

Discussion
Plant immunity comprises a multicellular network in which individual 
cells interpret input signals with their distinct molecular networks and 
communicate with other cells. Our molecularly defined spatiotemporal 
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range. n, Proposed model for the potential role and regulation of immune-cell 
states. Scale bar, 100 µm (c,d), 200 µm (g) or 1 mm (b).



8  |  Nature  |  www.nature.com

Article
atlas of pathogen-infected leaves revealed various cell states in tran-
scriptome and epigenome detail. This resource also provides a means 
to investigate individual cell states that have been obscured in conven-
tional bulk or dissected tissue analyses and by live imaging of a limited 
number of reporter lines. For instance, we identified a PCC subpopula-
tion with a distinct state characterized by the induction of SAR genes 
(Fig. 1e) and mesophyll subpopulations that activate different branches 
of tryptophan-derived defence metabolite pathways (Fig. 1g).

We also described a rare cell state located at the nexus of immune- 
active hotspots, which we termed the PRIMER cell state (Fig. 5). In addi-
tion to mapping previously characterized genes (BON3, WRKY8, LSD1 
and CAMTA3) with common immunosuppressive functions to PRIMER 
cells, our integrative snMultiome and MERFISH analyses identified 
another PRIMER cell marker gene, GT-3A, which encodes a TF, and dem-
onstrated that it contributes to plant immunity against pathogen infec-
tion (Fig. 5). Comparisons between PRIMER cells and their surrounding 
cells (bystander cells) revealed distinct transcriptional and epigenetic 
landscapes (Fig. 5). It is possible that there are additional specialized 
cell states in PRIMER and bystander cells. A deeper understanding of 
immune-cell states requires the development and application of new 
methodologies, such as imaging techniques that visualize both patho-
gen effector proteins and numerous plant genes simultaneously in three 
dimensions at single-cell resolution25,26 (see the section ‘Limitation of 
this study’ in the Supplementary Information).

Previous studies have shown that GT-3A negatively regulates plant 
defence against nematode infection in the root27, which suggests that 
GT-3A may have a role in defence against different types of pathogens 
that infect other tissues. In support of this hypothesis, GT-3A-ox plants 
were more susceptible to the fungal pathogen Colletotrichum higgin-
sianum (Extended Data Fig. 9j).

Recent discoveries have shed light on the role of nucleotide-binding 
domain and leucine-rich repeat receptors as calcium channels or 
NADases28–35. However, the exact mechanisms that underlie ETI acti-
vation and how this process effectively suppresses pathogen growth 
are not fully understood. It has been proposed that localized acquired 
resistance (LAR)36 may be important for ETI37. LAR is a strong defence 
response in cells surrounding those that have been exposed to pathogen 
effectors. We revealed the spread of ETI responses from PRIMER cells 
(Fig. 5e) and captured potential LAR responses with detailed molecular 
information. Notably, ALD1 and FMO1, encoding canonical SAR com-
ponents, were expressed in bystander cells but not in PRIMER cells 
(Fig. 5b–e), which indicates that the SAR pathway has a specific role in 
LAR responses. This idea is plausible given the long-distance signalling 
capability of SAR. We propose that PRIMER cells may undergo hyper-
sensitive cell death, which subsequently sends signals to neighbour-
ing cells that activate immune responses, including the SAR pathway. 
As activation of the SA pathway can suppress cell death38, GT-3A may 
contribute to cell death in PRIMER cells by suppressing SA signalling 
(Fig. 5n). Further analysis of our data could uncover the roles of various 
immune cell states and how these cells communicate with surrounding 
cells to confer successful defence.

In addition to identifying previously unknown immune-cell popula-
tions, our snMultiome data predicted numerous putative TF–ACR–gene 
modules. The successful integration of snMultiome and MEFISH data 
enabled us to spatially map gene expression and chromatin states 
(Extended Data Fig. 8a–d). These results can be used to discover pre-
viously uncharacterized immunity-related genes, and defence-related 
CREs can also be identified through de novo motif analysis.

Finally, we built a database (https://plantpathogenatlas.salk.edu) to 
facilitate the exploration of previously uncharacterized cell popula-
tions associated with disease and resistance with spatial and temporal 
information and potential regulatory mechanisms. Our database can 
be used for hypothesis generation and testing and will catalyse new 
discoveries of molecular mechanisms that underlie plant–microorgan-
ism interactions at high resolution.
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Methods

Reagents and kits
The following reagents and kits were used: ammonium persulfate 
(Sigma, 09913); BSA solution (Sigma, A1595); Chromium Next GEM 
Single Cell Multiome ATAC + Gene Expression kits (10x Genomics, 
PN-1000283); Corning Falcon cell strainers (Corning, 08-771-2); 
dithiothreitol (Thermo, R0861); EDTA, pH 8.0 RNase-free (Invitro-
gen, AM9260G); KCl (2 M) RNase-free (Invitrogen, AM9640G); MACS 
SmartStrainers (Milteny Biotec, 130-098-458); MERSCOPE 500 Gene 
Imaging kits (Vizgen, 10400006); MERSCOPE 500 Gene Panel (Viz-
gen, 10400003); MERSCOPE Sample Prep kits (Vizgen, 10400012); 
N,N,N′,N′-tetramethylethylenediamine (Sigma, T7024-25ML); NaCl 
(5 M) RNase-free (Invitrogen, AM9759); NP40 (IGEPAL CA-630) (Sigma, 
I8896); paraformaldehyde (Sigma, F8775); PBS (10×) pH 7.4 RNase-free 
(Thermo Fisher, AM9625); protease inhibitor cocktail (Sigma, P9599); 
Protector RNase inhibitor (Sigma, 3335402001); Scigen Tissue-Plus 
OCT compound (Fisher, 23-730-571); spermidine (Sigma, S2626); 
spermine (Sigma, 85590); Triton-X (Sigma, 93443); and UltraPure 1 M 
Tris-HCI buffer pH 7.5 (Invitrogen, 15567027).

Gene symbols, names and ordered locus names
The following genes were highlighted in this study: ALD1 (AGD2-LIKE 
DEFENCE RESPONSE PROTEIN 1, At2g13810); BCA2 (BETA CARBONIC 
ANHYDRASE 2; At5g14740); BON3 (BONZAI 3; At1g08860); CBP60g 
(CALMODULIN BINDING PROTEIN 60-LIKE G; At5g26920); FDH (FID-
DLEHEAD; At2g26250); FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1; 
At1g19250); GT-3A (TRIHELIX DNA-BINDING FACTOR (GT FACTOR) BIND-
ING 3A; At5g01380); ICS1 (ISOCHORISMATE SYNTHASE 1; At1g74710); 
LSD1 (LESION SIMULATING DISEASE 1; At4g20380); HSFB2b (HEAT 
SHOCK TRANSCRIPTION FACTOR B2b; At4g11660); ILL6 (IAA-LEUCINE 
RESISTANT (ILR)-LIKE GENE 6; At1g44350); MAM1 (METHYLTHIOALKY-
LMALATE SYNTHASE 1; At5g23010); WRKY8 (At5g46350); and WRKY46 
(At2g46400).

Plant growth and bacterial infection for single-cell and spatial 
analyses
A. thaliana Col-0 was grown in a chamber at 22 °C with a 12-h light 
period and 60–70% relative humidity for 30–31 days. Bacterial strains 
were cultured in King’s B liquid medium with antibiotics (rifampicin 
and tetracycline) at 28 °C. Three bacterial strains—P. syringae pv. 
tomato DC3000 with an empty vector (pLAFR3), avrRpt2 (pLAFR3) 
and avrRpm1 (pLAFR3)—have been previously described9–11. Bacteria 
were collected by centrifugation and resuspended in sterile water to an 
OD600 of 0.001 (approximately 5 × 105 c.f.u. ml−1). In total, 20 A. thaliana 
leaves (4 fully expanded leaves per plant) were syringe-inoculated with 
bacterial suspensions using a needleless syringe. Syringe infiltration 
was performed on one or two corners of each leaf, and bacterial suspen-
sions were spread throughout the entire leaf. We chose four different 
time points (4, 6, 9 and 24 h), representing early stages of infection and 
when dynamic transcriptional reprogramming was observed in a previ-
ous study that used bulk RNA-seq40. For each strain, four time points 
were sampled at the same time of day by infiltrating bacteria at different 
times to minimize the influence of circadian rhythms. The 20 infected 
leaves were collected using forceps and immediately processed for 
extraction of nuclei. For the mock condition, water-infiltrated leaves 
were collected after 9 h.

Generation of transgenic plants and pathogen-infection assays
pWAT206 was a gift from A. Takeda. The following plasmids were con-
structed using HiFi DNA assembly kits (New England Biolabs) and were 
verified by Sanger sequencing. Three PCR fragments were amplified 
from pBICRMsG41 using primer pairs (mEGFP-Nter_1_F plus mEGFP_1_R; 
mEGFP_2_F plus mEGFP_2_R; and mEGFP_3_F plus mEGFPNter_3_R) and 
were then assembled into StuI/AscI-digested pBICAscII42. The resulting 

plasmid was used as a template for two PCR reactions using primer 
pairs mEGFP_Nter_1_F plus mEGFP_4R and mEGFP_4F plus mEGFP_
Nter_3R. These PCR products were assembled into StuI/AscI-digested 
pBICAscII, which produced pBIC_mEGFP_Nter. A PCR fragment was 
amplified from pBIC_mEGFP_Nter using mEGFP_Cter_F1 plus mEGFP_
Cter_R, and then used as a template for PCR using mEGFP_Cter_F2 plus 
mEGFP_Cter_R. The resulting PCR fragment was assembled into StuI/
AscI-digested pBIC_mEGFP_Nter to obtain pBIC_mEGFP_Cter. The 
coding sequence of GT-3A (At5g1380) was amplified by PCR using the 
primer pair GT3a_mEGFP_F plus GT3a_mEGFP_R and was assembled 
into StuI-digested pBIC_mEGFP_Cter to obtain pBIC_GT3a_mEGFP. The 
sequence encoding carboxy-terminally mEGFP-fused GT-3A was ampli-
fied from pBIC_GT3a_mEGFP by PCR using a primer pair (35Sp_HiFi_F 
and 35Ster_HiFi_R) and was then assembled into XhoI/XbaI-digested 
pWAT206 to obtain pWAT206_GT3a_mEGFP. A. thaliana Col-0 plants 
were transformed using Agrobacterium tumefaciens GV3101 (pMP90, 
pSoup) with pWAT206_GT3a_mEGFP as previously described43. Two 
independent Basta-resistant transgenic lines were used for bacterial 
growth assays with a bioluminescent P. syringae pv. tomato DC300043 
strain and for lesion development analysis using C. higginsianum MAFF 
305635. Plants were grown in a climatic chamber with a temperature 
of 22 °C, 60% relative humidity and light intensity of 6,000 lux (about 
100 μmol m–2 s–1) for 10 h. Bacterial suspensions at OD600 = 0.001 in 
sterile water were syringe-infiltrated into leaves of 4–5-week-old plants. 
Bacterial growth was measured as bioluminescence using a GloMax  
Navigator Microplate luminometer (Promega) as previously described44. 
For lesion development analysis, leaves of 4–5-week-old plants were 
drop-inoculated with a 5 µl conidial suspension of C. higginsianum  
(1 × 105 conidia per ml). The inoculated plants were kept under high 
humidity in a climatic chamber with a temperature of 22 °C and light 
intensity of 6,000 lux for 10 h. Lesion size was measured at 6 days after 
inoculation using ImageJ.

Generation of gt3a-KO plants
The gt3a-KO plants were created by genome editing with CRISPR–Cpf1. 
The plasmid pWAT235-Cas9-HF-cc was provided by A. Takeda. The Cpf1 
sequence was amplified from pY004 (Addgene, 69976) by PCR using a 
primer pair (SpeI-NLS-Cpf1-F and BamHI-NLS-Cpf1-R; Supplementary 
Table 2), followed by digestion with SpeI and BamHI. The digested 
DNA fragment was ligated to pWAT235-Cas9-HF-cc, which had been 
digested with SpeI and BamHI, resulting in pWAT235-Cpf1-cc. Two 
PCR fragments were amplified from pWAT235-Cpf1-cc using primer 
pairs Gb-ccdB-F and Gb-ccdB-R, and Gb-U626-F and Gb-U626-R. 
These PCR fragments and BsaI-digested pWAT235-Cas9-HF-cc were 
assembled into a single plasmid using a HiFi DNA assembly kit, which 
resulted in pWAT235-Cpf1-U626-cc-polyT. Two oligonucleotides, 
GT3a_gRNA2_F and GT3a_gRNA2_R, were hybridized and ligated to 
BsaI-digested pWAT235-Cpf1-U626-cc-polyT, which resulted in pWA
T235-Cpf1-U626-GT3a-gRNA2-polyT. A. thaliana Col-0 plants were 
transformed using A. tumefaciens GV3101 (pMP90, pSoup) with 
pWAT235-Cpf1-U626-cc-polyT as previously described43. A transgenic 
line with a premature stop codon due to a 5-bp deletion in the GT-3A 
gene was selected and used throughout this study.

Bulk RNA-seq of plants
Leaves of wild-type plants and one of the transgenic lines expressing 
GT-3A–mEGFP were syringe-infiltrated with water or DC3000 at an 
OD600 of 0.001 and were collected 24 h after infiltration. Total RNA 
was extracted using TRI Reagent (Sigma). One microgram of total RNA 
was used for library preparation using the BrAD-seq method to cre-
ate strand-specific 3′ digital gene-expression libraries45. The libraries 
were sequenced on a DNBSEQ-G400 platform at BGI, which produced 
100-bp end reads. Because the quality of reverse reads was poor due 
to the poly(A) sequence, only forward reads were used for analysis. 
Trimming of the first 8 bases and adaptors and quality filtering were 



performed using fastp (v.0.19.7)46 with the parameters -x -f 8 -q 30 -b 50.  
The trimmed and quality-filtered reads were mapped to the Arabidop-
sis genome (TAIR10) using STAR (v.2.6.1b)47 with default parameters 
and transformed to a count per gene per library using featureCounts 
(v.1.6.0)48. Statistical analysis of the RNA-seq data was performed in 
the R environment (v.4.1.3). Because the BrAD-seq method involves 
poly(A) enrichment, mitochondrial and chloroplast genes were 
excluded. Genes with mean read counts of fewer than ten per library 
were excluded from the analysis. The resulting count data were sub-
jected to TMM normalization using the function calcNormFactors in 
the package edgeR, followed by log transformation by the function 
voomWithQualityWeights in the package limma. To each gene, a linear 
model was fit using the function lmFit in the limma package. For vari-
ance shrinkage in the calculation of P values, the eBayes function in the 
limma package was used. The resulting P values were then corrected for 
multiple hypothesis testing by calculating Storey’s q values using the 
function qvalue in the package qvalue. To extract genes with significant 
changes in expression, cut-off values of q < 0.05 and |log2-transformed 
fold change| > 1 were applied.

Extraction of nuclei and single-nucleus sequencing
Fresh nucleus purification buffer (NPB; 15 mM Tris pH 7.5, 2 mM EDTA, 
80 mM KCl, 20 mM NaCl, 0.5 mM spermidine, 0.2 mM spermine, 1:100 
BSA and 1:100 protease inhibitor cocktail) was prepared before the 
experiment and chilled on ice. All the subsequent procedures were per-
formed on ice or at 4 °C. Twenty leaves were chopped in 500–1,000 µl 
cold NPB with 1:500 Protector RNase IN with a razor blade on ice for 
5 min to release nuclei and then incubated in 20 ml NPB. The crude 
extract of nuclei was sequentially filtered through 70-µm and 30-µm 
cell strainers (70 µm, Corning Falcon cell strainers, Corning, 08-771-2; 
30 µm, MACS SmartStrainers, Milteni Biotec, 130-098-458). Triton-X 
and NP40 were added to the extract to a final concentration of 0.1% 
each, and the extract was incubated at 4 °C for 5 min with rotation. The 
suspension was centrifuged at 50g for 3 min in a swing-rotor centrifuge 
to pellet non-nucleus debris and the supernatant was recovered. The 
nuclei were pelleted by centrifugation at 500g for 5 min in a swing-rotor 
centrifuge. When the pellet was green, the pellet was resuspended in 
20 ml NPBd (NPB with 0.1% Triton-X and 0.1% NP40) with 1:1,000 Pro-
tector RNase IN by pipetting, followed by centrifugation at 500g for 
5 min. When the pellet was translucent, the NPBd wash was skipped. 
The pellet was then washed by resuspending it in 20 ml NPB with 1:1,000 
Protector RNase IN and centrifuging at 500g for 5 min in a swing-rotor 
centrifuge. The pellet was resuspended in 950 µl of 1× Nuclei Buffer 
(10x Genomics, PN-2000207) with 1:40 Protector RNase IN and 1 mM 
dithiothreitol. The suspension of nuclei was centrifuged at 50g for 
3 min in a swing-rotor centrifuge to pellet non-nucleus debris and the 
supernatant was recovered. This step was repeated one more time. 
The resulting nuclei were manually counted using a haemocytometer. 
Nuclei were pelleted by centrifugation at 500g for 5 min in a swing-rotor 
centrifuge and the supernatant was removed, leaving approximately 
10 µl of the buffer. Nuclei were counted again, and up to 16,000 nuclei 
were used for subsequent steps. However, in most samples, we did not 
load the maximum number of nuclei that the 10x Genomics kit accepts 
to avoid the risk of clogging the instrument, which can result in variable 
numbers of recovered nuclei among samples (Extended Data Fig. 1b). 
scRNA-seq and ATAC–seq libraries were constructed according to the 
manufacturer’s instructions (10x Genomics, CG000338). scRNA-seq 
libraries were sequenced using an Illumina NovaSeq 6000 in dual-index 
mode with ten cycles for i7 and i5 indices. snATAC–seq libraries were 
also sequenced using an Illumina NovaSeq 6000 in dual-index mode 
with 8 and 24 cycles for the i7 index and the i5 index, respectively.

Single-cell multiomic analysis
Raw data processing. Sequence data were processed to obtain  
single-cell feature counts by running cellranger (v.6.0.1) and cellranger-arc  

(v.2.0.0) for snRNA-seq data and snATAC–seq data, respectively. For 
snRNA-seq, the –include-introns option was used to align reads to the 
A. thaliana nuclear transcriptome built using the TAIR10 genome and 
the Araport 11 transcriptome. The chloroplast genome was removed 
from the reference genome for the analysis of both snRNA-seq and 
snATAC–seq data. The A. thaliana TAIR10 genome was downloaded 
from https://plants.ensembl.org/, and the chloroplast genome was 
manually removed. The A. thaliana TAIR10 gene annotation file was 
manually modified by removing chloroplast genes and replacing semi-
colons in the ‘gene_name’ column with hyphens to prevent errors during 
cellranger-arc processing. We note that a mean of 23.4% and 26.0% of 
reads were mapped on the chloroplast genome in snRNA-seq data and 
snATAC–seq data, respectively. Removing the chloroplast genome from 
the reference did not affect the overall RNA and ATAC count distribu-
tion. Count data were analysed using the R packages Seurat (v.5)49 and 
Signac50.

Quality control and cell filtering. Before integrating the datasets, 
doublets were predicted using DoubletFinder51 and filtered out. Qual-
ity control matrices for snATAC–seq were generated using a modified 
version of the loadBEDandGenomeData function in the R package 
Socrates52. ACRs were identified using MACS2 (ref. 53) with the fol-
lowing parameters: -g (genomesize)=0.8e8, shift=−50, extsize=100, 
and --qvalue=0.05, --nomodel, --keep-dup all. The fraction of reads 
mapping to within 2 kb upstream or 1 kb downstream of the transcrip-
tion start site (TSS) was calculated. Nuclei were filtered using the fol-
lowing criteria: 200 < RNA UMI count < 7,000; RNA gene count > 180; 
200 < ATAC UMI count < 20,000; and fraction of RNA reads mapped 
to mitochondrial genome < 10%. Seurat objects of individual samples 
were merged using the Merge_Seurat_List function of the scCustomize  
package.

snRNA-seq clustering. snRNA-seq clustering was performed using the 
R package Seurat. The cell-by-gene RNA count matrix was normalized 
using SCTransform. Dimension reduction was performed using princi-
pal component analysis with RunPCA. Technical variance among sam-
ples was reduced using Harmony54 using principal components (PCs) 
1–20. Graph-based clustering was performed on the Harmony-corrected 
PCs 1–20 by first computing a shared nearest-neighbour graph using the 
PC low-dimensional space (with k = 20 neighbours). Louvain clustering 
(resolution = 1.0) was then applied, and the clusters were projected 
into an additionally reduced space using UMAP (n.neighbours=20 
and min.dist=0.01).

snATAC–seq peak calling. Peaks were called independently on each 
cluster defined by snRNA-seq data and then combined using the Call-
Peaks function of Signac, which uses MACS2 with the following param-
eters: effective.genome.size=1.35e8, extsize=15, shift=−75. Peak counts 
were quantified using the FeatureMatrix function. Compared with 
the default peak calling pipeline of cellranger-arc (24,394 peaks), this 
cluster-specific peak calling approach was able to capture more peaks 
(35,560 peaks), which is consistent with a previous report50.

snATAC–seq clustering. Dimensionality reduction was performed 
using latent semantic indexing (LSI)55. First, the top 95% most common 
features were selected using the FindTopFeatures function. Then, the 
term-frequency inverse-document-frequency (TF-IDF) was computed 
using RunTFIDF with scale.factor=100,000. The resulting TF-IDF matrix 
was decomposed with singular value decomposition with RunSVD, 
which uses the irlba R package. Technical variance among samples 
was reduced using Harmony with LSI components 2–10. Graph-based 
clustering was performed on the Harmony-corrected LSI components 
2–20 by first computing a shared nearest-neighbour graph using  
the LSI low-dimensional space (with k = 20 neighbours). Louvain 
clustering (resolution = 0.8) was then applied, and the clusters were 
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projected into an additionally reduced space with UMAP (n.neighbours= 
30L and min.dist=0.01).

RNA–ATAC joint clustering. The two modalities were integrated 
by weighted nearest-neighbour analysis using FindMultiModal-
Neighbors of Seurat with Harmony-corrected PCs 1–20 for RNA and 
Harmony-corrected LSI components 2–20 for ATAC. Then, SLM (resolu-
tion = 0.5) was applied and projected with UMAP (n.neighbours=30L 
and min.dist=0.1).

ATAC gene activity score. ATAC gene activity score was calculated 
using the GeneActivity function of Signac with extend.upstream=400.

Peak-to-gene linkage analysis. LinkPeaks of Signac was used to call 
significant peak-to-gene linkage for each infection condition (mock, 
DC3000, AvrRpt2 and AvrRpm1). Background-corrected Pearson’s 
correlation coefficients between the gene expression of each gene 
and the accessibility of each peak within 500 kb of the gene TSS were 
calculated. A P value was calculated for each peak–gene pair using a 
one-sided z-test, and peak–gene pairs with P < 0.05 and a Pearson’s 
correlation coefficient of >0.05 were retained as significant links.

Motif enrichment analysis. Motifs present in the JASPAR2020 data-
base56 for Arabidopsis (species code 3702) were used. Cluster-specific 
peaks were first identified using FindMarkers of Seurat with  
default parameters. A hypergeometric test was used to test for the 
over-representation of motifs in the set of differentially accessible 
peaks using FindMotifs of Signac. Motif plots were generated using  
MotifPlot. Motif enrichment scores (motif deviation scores) of indi-
vidual TF motifs in individual cells were calculated using chromVAR17. For 
the integration of motif enrichment scores and mRNA expression, motif 
names in JASPAR2020 were matched with gene names. Motifs that could 
not be uniquely associated with genes were removed from analysis.

TF target prediction. To predict genes that are regulated by a TF, ACRs 
containing each TF motif were extracted. Then, genes for which expres-
sion correlated with these ACRs were identified. We considered genes 
within 5 kb from an ACR with a linkage score of >0.1 as significant candi-
dates. GO enrichment analysis was performed for these candidates for 
each TF using the enrichGO function of clusterProfiler with org.At.tair.
db annotation. For the analysis in Fig. 2h, a more stringent threshold 
(linkage score > 0.2) was applied. GO enrichment plots were created 
using ggplot2 (ref. 57).

Subcluster analysis. Nuclei with the same subcluster label were  
aggregated, and log2-transformed transcripts per million (TPM)  
values were calculated. Subclusters with more than 18,000 undetected 
genes were removed from the analysis. For the subclusters that passed 
the filtering step, genes were clustered using k-mean clustering with 
k = 12 (determined using the elbow method) (Extended Data Fig. 3b). 
Then, GO enrichment analysis was performed for the genes in each 
cluster (Extended Data Fig. 3b). Three clusters (1, 5 and 8) showed  
enrichment of an immunity-related function (responses to SA); genes 
in these clusters were defined as ‘putative immune genes’ and used for 
downstream analysis.

Pseudotime analysis. To calculate pseudotime, the cell-by-gene matrix 
for cells annotated as mesophyll was obtained from the snMultiome 
data. We used the function scanpy.tl.dpt with n_dcs=2. Pseudotime 
trajectories were constructed with each mesophyll cell in mock samples 
being used as a starting cell. Then, these individual trajectories were 
averaged in each cell to create a single, unified pseudotime trajectory. 
Heat map gene trends for a given gene were calculated by fitting a lin-
ear GAM using the pygam function LinearGAM withs (0, lam=400) to 
fit a GAM to RNA expression levels across sorted pseudotime values.

Comparisons between PRIMER and bystander cells
Among the subclusters of immune-active mesophyll cells in the snMul-
tiome data, PRIMER and bystander cell clusters were defined on the 
basis of expression of the marker genes BON3 and ALD1, respectively. 
By comparing these cell states, DEGs were identified using the Find-
Markers function of Seurat. Motif enrichment analysis was performed 
on ACRs within 2 kb of the cell-state-enriched DEGs.

To assess the contribution of CAMTA3 in different cell states, genes 
regulated by CAMTA3 were first identified using a published bulk 
RNA-seq dataset39, comparing wild-type and camta3-D (a dominant 
negative mutant of CAMTA3). Genes suppressed by CAMTA3 after ETI 
(triggered by AvrRpm1 or AvrRps4 infection) were overlapped with the 
cell-state DEGs defined above. Hypergeometric tests were performed 
to assess the significance of the overlaps.

snRNA-seq analysis of gt3a-KO plants
snRNA-seq was performed on gt3a-KO plants infected by AvrRpt2 or 
treated with water (mock) at 9 and 24 h.p.i. Two independent replicates 
were prepared for each infection condition. The data were filtered using 
the same criteria as for the snMultiome analysis without considering 
ATAC–seq information. The gt3a-KO snRNA-seq data were integrated 
with the Col-0 snMultiome data (mock and AvrRpt2 conditions), and 
de novo clustering was performed in the same way as described above. 
On the basis of immune-gene expression, immune-active mesophyll 
clusters were identified and further subclustered. From these subclus-
ters, PRIMER and bystander cells were defined on the basis of expression 
of the marker genes BON3 and ALD1, respectively. For each cell state, 
DEG analysis was performed comparing Col-0 and gt3a-KO plants to 
assess the effect of the GT-3A mutation.

Comparisons between single-cell and bulk omics datasets
Our snATAC–seq data were compared with published bulk ATAC–seq 
data of mature A. thaliana leaves activating pattern-triggered immunity 
(PTI), ETI or both PTI and ETI, as well as non-immune-active leaves12. 
All ACRs identified in the bulk ATAC–seq datasets were combined and 
compared with the ACRs identified in our snATAC–seq datasets.

MERFISH
MERFISH panel design. We curated 500 target genes that included the 
following genes: (1) previously defined markers of A. thaliana leaf cell 
types58; (2) genes involved in various processes such as immunity, hor-
mone pathways and epigenetic regulation; and (3) a variety of TFs pre-
viously analysed using DAP-seq (a TF–DNA interaction assay)59. Genes 
for which more than 25 specific probes could not be designed based on 
probe design software from Vizgen were excluded from the target gene 
panel. Highly expressed genes could cause the overcrowding of smFISH 
signals and hinder MERFISH quantification. To avoid including highly 
expressed genes in the panel, we assessed target gene expression by 
using a publicly available bulk RNA-seq dataset of A. thaliana infected 
by AvrRpt2 in the same setup as the current study at eight different time 
points (1, 3, 4, 6, 9, 12, 16 and 24 h)40. For each gene, the highest expres-
sion value among the eight time points was used. Genes that showed 
TPM values of >710 were not included in the panel. The total TPM of the 
500 genes was approximately 22,000. ICS1 was targeted with a single 
round of smFISH as this gene is highly expressed. The smFISH result 
was provided as an image without quantitative information. Bacterial 
cells were visualized by targeting 19 highly expressed genes (based on 
previously published in planta bulk RNA-seq data60) as a single target. 
Supplementary Table 1 has a list of the genes targeted by MERFISH. All 
the probes were designed and constructed by Vizgen.

Tissue sectioning, fixation and mounting. Plants were grown  
according to the methods described above. Leaves matching the afore-
mentioned treatments and time points were excised and immediately 



incubated and acclimated in OCT (Fisher) for 5 min. Following incuba-
tion, the leaves were immediately frozen as previously described61. 
Tissue blocks were acclimated to −18 °C in a pre-cooled cryostat cham-
ber (Leica) for 1 h. Tissue blocks were trimmed until the tissue was 
reached, after which 10-µm sections were visually inspected until the 
region of interest was exposed. Sample mounting and preparation were 
performed according to the MERSCOPE user guide, but with slight 
modifications. In brief, a 10-µm section was melted and mounted onto 
a room-temperature MERSCOPE slide (Vizgen, 20400001), placed into 
a 60-mm Petri dish and re-frozen by incubation in the cryostat chamber 
for 5 min. Subsequent steps were performed with the mounted samples 
in the Petri dish. The samples were then baked at 37 °C for 5 min and 
were incubated in fixation buffer (1× PBS and 4% formaldehyde) for 
15 min at room temperature. Samples were then washed with 1× PBS 
containing 1:500 RNase inhibitor (Protector RNase inhibitor, Millipore 
Sigma) for 5 min at room temperature in triplicate. Following the final 
PBS wash, samples were dehydrated by incubation in 70% ethanol at 
4 °C overnight.

MERFISH experiment. Tissue sections were processed following 
Vizgen’s protocol. After removing 70% ethanol, the sample was in-
cubated in the sample prep wash buffer (PN20300001) for 1 min and 
then incubated in the formamide wash buffer (PN20300002) at 37 °C 
for 30 min. After removing the formamide wash buffer, the sample was  
incubated in the MERSCOPE Gene Panel mix at 37 °C for 42 h. After 
probe hybridization, the sample was washed twice with the forma-
mide wash buffer at 47 °C for 30 min and once with the sample prep 
wash buffer at room temperature for 2 min. After the washing step, the 
sample was embedded in hydrogel by incubation in the gel embedding 
solution (gel embedding premix (PN20300004), 10% (w/v) ammonium 
persulfate solution and N,N,N′,N′-tetramethylethylenediamine) at room 
temperature for 1.5 h. Then, the sample was cleared by first incubating 
it in digestion mix (digestion premix (PN 20300005) and 1:40 protector 
RNase inhibitor) at room temperature for 2 h, followed by incubation 
in the clearing solution (clearing premix (PN 20300003) and protein-
ase K) at 47 °C for 24 h and then at 37 °C for 24 h. The cleared sample was 
washed twice with the sample prep wash buffer and stained with DAPI 
and PolyT staining reagent at room temperature for 15 min. Samples 
were then washed with the formamide wash buffer at room temperature 
for 10 min and rinsed with the sample prep wash buffer. The sample was 
imaged using a MERSCOPE instrument, and detected transcripts were 
decoded on the MERSCOPE instrument using a codebook generated by 
Vizgen. Transcripts were visualized using Vizgen’s Visualizer.

MERFISH segmentation and processing. Cell-boundary segmenta-
tion was performed for each MERSCOPE data output. DAPI-targeting 
and poly(A)-targeting probes demonstrated variable success in stain-
ing nuclei and cytoplasm, respectively, depending on the samples 
and tissue regions examined (Fig. 3b and Extended Data Fig. 7e show 
failed and successful segmentation, respectively). By contrast, dense 
transcript areas marked nucleus locations more robustly (Extended 
Data Fig. 7e). Therefore, a transcript-based segmentation method 
was used. For each sample, a two-dimensional Numpy array of zeroes 
was generated, which modelled the total pixel area imaged. The coor-
dinates of identified RNA transcripts were changed from 0 to 1 in this 
array. Next, the array was blurred using the cv2.GaussianBlur func-
tion in OpenCV with ksize=(5,5). The resulting array was chunked into 
2,000 × 2,000 pixel regions. These regions were loaded into Cellpose62, 
a deep-learning-based segmentation tool, and a custom segmentation 
model was trained by manually segmenting nucleus objects across ten 
2,000 × 2,000 pixel regions in the Cellpose GUI.

The custom model was then used to predict the segmentation bound-
aries in all the remaining regions, with the parameters diameter=22.92, 
flow_threshold=0.7 and cell probability threshold=−2. Next, the total 
number of cells in an experiment was calculated by summing the 

number of unique cells across all regions. This number was then used 
to initialize the --num-cells-init command in another segmentation tool, 
Baysor63, which considers the joint likelihood of transcriptional compo-
sition and cell morphology to predict cell boundaries. Baysor was run 
using a downloaded Docker image and parameters -s 250, --n clusters 1, 
-i 1, --force-2d, min-molecules-per-gene=1, min-molecules-per-cell=50, 
scale=250, scale-std=“25%”, estimate-scale-from-centers=true, 
min-molecules-per-segment=15, new-component-weight=0.2, 
new-component-fraction=0.3.

To test the quality of our transcript-based segmentation method, 
we used an FOV with successful DAPI staining (which was rare in our 
samples) and performed DAPI-based watershed segmentation and 
transcript-based segmentation (Extended Data Fig. 7d). Results from 
these two segmentation strategies agreed with each other in general, 
with the transcript-based approach capturing transcripts in the cyto-
plasm in addition to those in the nucleus (Extended Data Fig. 7d–f). 
This result indicated that our segmentation approach can reliably 
capture cells.

After Baysor segmentation, a cell-by-gene matrix was created from 
the transcript cell assignments. Cells with fewer than 50 assigned 
transcripts were removed. Scanpy was used for post-processing of 
our MERFISH experiments. After loading the respective cell-by-gene 
matrix into an Anndata object for each experiment, we stored the spatial 
coordinates of each cell obtained from Baysor. The individual transcript 
counts in each cell were normalized by the total number of transcript 
counts per cell. The Anndata cell-by-gene matrix was then log-scaled.

MERFISH–snMultiome data integration and label transfer. To inte-
grate the MERFISH experiments with each other, we used FindIntegra-
tionAnchors followed by the IntegrateData function in Seurat (v.5). To 
integrate the MERFISH experiment data with our snMultiome data, we 
integrated the corresponding time points in each modality separately. 
For each time point in the infection data (mock, 4, 6, 9 and 24 h), we used 
gimVI from scvi-tools to project both the snMultiome and MERFISH 
cells into the same latent space using their RNA expression counts. 
gimVI was trained over 200 epochs with a size 10 latent space for each 
time point. To transfer continuous observations (pseudotime, RNA 
and ATAC gene activity counts, and motif enrichment) from the snMul-
tiome data to the MERFISH data, we assigned the numerical average 
of the nearest 30 snMultiome cells in the gimVI latent space for each 
MERFISH cell. Similarly, to transfer categorical observations, including 
cell types and cluster labels, we assigned each MERFISH cell the most 
common label in the set of its 30 nearest snMultiome cells. To plot 
the joint embedding of both modalities (MERFISH and snMultiome) 
for a single time point, we ran UMAP on the gimVI latent space with 
n_neighbors=30 and min_dist=0.1. Note that in the spatial mapping of 
cell types predicted in snMultiome (Fig. 4c), although the section was 
in the middle of the leaf, some epidermal cells were included because 
the section was not completely flat.

smFISH quantification and bacterial colony identification. Quan-
tification of transcripts labelled by smFISH was performed using the 
Python package Big-FISH. Seven z planes of MERSCOPE smFISH images 
were projected into two dimensions by using numpy.max along the 
z axis and chunked into 2,000 × 2,000 regions. Spots were then called 
using the function bigfish.detection.detect_spots with threshold=50, 
spot_radius=(10, 10) and voxel_size=(3, 3). To identify bacterial colo-
nies, bigfish.detection.detect_spots was called to label ‘bacterial meta 
gene’ locations with threshold=200, log_kernel_size=(1.456, 1.456) and 
minimum_distance=(1.456, 1.456). To account for autofluorescence 
from the plant tissue, the same spot-caller was used to call spots on 
DAPI and ICS1 channels. The spots from all three channels were aggre-
gated, and DBSCAN from scikit-learn.cluster was used on all spots with 
eps=35 and min_samples=5. We kept all DBSCAN clusters for which the 
DAPI and ICS1 spots constituted less than 30% of the total cluster spots. 
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These remaining clusters represented potential bacterial colonies. 
We manually evaluated each cluster to merge those marking the same 
colony and removed the clusters marking obvious autofluorescence, 
for example, signals from stomata. Windows of 300 × 300 pixels were 
generated around each final cluster, and detect_spots was used with 
threshold=95, spot_radius=(17, 17) and voxel_size=(3, 3) for accurate 
quantification of individual bacteria per cluster.

Bacterial neighbourhood analysis. To determine the level of immunity 
of the neighbourhood around each bacteria colony, we identified the 
1–1,000 nearest cells in proximity to the colony. Then, the smoothed 
imputed pseudotime values of these neighbouring cells were averaged 
to obtain a single mean pseudotime value for each neighbour size. Error 
curves were calculated using the standard error divided by the mean 
at each neighbourhood size. These values serve as indicators of the 
overall immunity level of the area around each colony.

Spatial differential expression analysis. To identify genes that are 
spatially associated with immune-rich areas (related to Fig. 5a), we first 
smoothed our imputed spatial pseudotime over the spatially nearest 
100 cells to find areas of immune-active hotspots. We then used RCTD64 
to deconvolve doublets in our spatial data using the cell types in our 
snMultiome data as a reference. We created a reference object with 
min_umi = 15 and ran RCTD on our MERFISH data with the parameters 
gene_cutoff = 0.0001, gene_cutoff_reg = 0.0001, fc_cutoff = −3, fc_cutoff_
reg = −3 and doublet_mode = ‘doublet’. We then ran C-SIDE20 of spacexr 
with run.CSIDE.single with cell_type_threshold = 0 to find the top spa-
tially differentially expressed genes per cell type along the smoothed 
spatial pseudotime (explanatory variable) and plotted the negative 
log-transformed P value against the log-transformed fold change.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All information supporting the conclusions are provided with the paper. 
The single-cell and bulk sequencing data generated in this study have 
been deposited in the National Center for Biotechnology Information 
Gene Expression Omnibus database (accession numbers GSE226826 
and GSE248054). Reference genomes, annotation and fully processed 
data for snMultiome analyses are available from the Salk website (http://
neomorph.salk.edu/download/Nobori_etal_merfish). The MERFISH 
data are available from the Salk website (http://plantpathogenatlas.
salk.edu). Genes targeted using MERFISH are listed in Supplementary 
Table 1. Information about primers used in this study is provided in 
Supplementary Table 2. Source data are provided with this paper.

Code availability
The codes to analyse snMultiome and MERFISH data are available at 
GitHub (https://github.com/tnobori/snMultiome and https://github.
com/amonell/Spatial_Plant_Pathogen_Atlas).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality control of snMultiome data. a, Violin plots 
showing transcripts per nucleus, genes per nucleus, ATAC reads per nucleus, 
and accessible chromatin regions (ACRs) per nucleus in each sample. b, The 
number of cells per sample. Two independent replicates were analyzed and 
combined for Mock and AvrRpt2 9 hpi conditions. c, Density scatterplots 
showing fraction reads in peaks (FRiP) score in each sample before cell filtering. 
x-axis: log10 transformed read depths. y-axis: fraction of Tn5 integration sites in 
ACRs. d, Density scatterplots of log10 transformed read depths (x-axis) by the 
fraction of Tn5 integration sites mapping to within 2 kb upstream and 1 kb 
downstream of transcription start sites (TSSs) (y-axis). Data in each sample 
before cell filtering is shown. c-d, Two replicates of Mock and AvrRpt2 9 h 
conditions were combined. e, Bar plot showing the number of ATAC-seq peaks 
identified in previous bulk ATAC-seq data and the present snATAC-seq data. 
Shared and assay unique peaks are shown in blue and red, respectively.  

f, Sample-aggregated chromatin accessibility around ACTIN2 (left) and ICS1 
(right). g, Principle component analysis of pseudobulk transcriptome of each 
sample. Independent replicates of Mock and AvrRpt2 9 h were labeled. h, Scatter 
plots comparing pseudobulk transcriptomes of Mock and AvrRpt2 9 h samples. 
Pearson’s correlation coefficient values were shown. i, Stacked bar plots showing 
the representation of gene expression-based Leiden clusters in each sample.  
j, Two-dimensional embedding of chromatin accessibility similarity among 
nuclei from all samples with uniform manifold approximation and projection 
(UMAP). Nuclei are colored by Leiden clusters. k, UMAP embeddings based on  
a joint neighbor graph that represents both gene expression and chromatin 
accessibility measurements. Nuclei are colored by de novo Leiden clusters 
based on the joint analysis (left) and Leiden clusters defined by gene expression 
measurement alone (right; Fig. 1b).



Extended Data Fig. 2 | Single-cell analysis of gene expression and chromatin 
accessibility. a, Dot plot showing the top marker genes of individual clusters. 
b, Cluster-aggregated chromatin accessibility surrounding FDH, a known 
marker gene for leaf epidermis. c, UMAP plot showing the ATAC-seq count  

on a peak near FDH (chromosome 2, position 11172821-11173529) in each nucleus.  
d, GO enrichment analysis for marker genes of each cluster. e, Expression of 
ICS1 mRNA in each nucleus in each sample. Adjusted p-values from a one-sided 
hypergeometric test followed by Benjamini-Hochberg correction are shown.



Article

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Comprehensive characterization of distinct cell 
populations. a, Heatmap showing pair-wise correlation of pseudobulk 
transcriptomes between sub-clusters of individual clusters. The top and side 
bars show major cluster labels. b, (Left) Schematic workflow for the selection  
of highly variable immune-related genes. First, genes that are significantly 
enriched in at least one of major or sub clusters were selected. Then, these 
genes were clustered based on pseudobulk expression of sub-clusters using 
k-mean clustering (k value was determined by the elbow method), followed  
by GO enrichment analysis of each k-mean cluster. Finally, gene clusters with 
enriched immunity-related GO terms were selected. (Right) Top GO terms 
enriched in 12 k-mean clusters. Clusters 1, 2, and 10 were selected as immune 
genes. c, Heatmap showing normalized expression of immune-related genes 
selected in (b) across all the sub clusters. The top bars indicate cell type and 
major cluster that each sub-cluster derived from. d, Expression of the phloem 

companion cell markers SUC2 and FTIP1. e, Expression of ALD1 and FMO1. f, 
Expression of ILL6 upon infection of AvrRpt2 in time course, showing specific 
induction in cluster 6. g, Expression of genes specifically expressed in sub-
cluster 6-8. h, Heatmap showing expression of immune-related genes shown in 
Fig. 1d in a previous time-course bulk RNA-seq study, where A. thaliana leaves 
were infected by DC3000, AvrRpt2, or AvrRpm1 or treated with mock control 
(water). These data do not capture the presence of various cell populations 
identified in Fig. 1d. i, Scatter plots showing the correlation between CRK12  
and CRK41 in the time course bulk RNA-seq (top) and single-nucleus RNA-seq 
(snRNA-seq; bottom). For snRNA-seq analysis, pseudobulk gene expression 
data of the subclusters (shown in c) were used. j, Expression of CRK12 and CRK41 
upon infection with AvrRpm1 as shown in the UMAP. These apparently correlated 
genes in bulk RNA-seq showed a highly different expression pattern at the 
single-cell level.
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Extended Data Fig. 4 | Linking gene expression and chromatin accessibility 
at the single-cell level. a, Schematic diagram of linked accessible chromatin 
regions (ACRs) and a gene. An ACR and a gene are “linked” when there is a 
significant correlation between chromatin accessibility and mRNA expression 
across individual cells. b, Density plot showing the frequency of linkages  
at different distances from the transcription start sites (TSSs). c, Heatmap 
showing the linkage score (Pearson correlation coefficient between ACR count 
and mRNA expression) for genes that showed at least one significant link in at 
least one of the infection conditions or Mock. When a gene had multiple links, 
the maximum linkage score was shown. The sidebar shows the k-mean cluster 

annotation (the k value was determined by the elbow method). d, Expression of 
mRNA encoding VSP2, UGT85A1, and MAM1. e,f, Cluster-aggregated chromatin 
accessibility surrounding CBP60g (e) and AT1G56660 (f). Violin plots on the 
side show aggregated mRNA expression of each gene. Both genes were highly 
expressed in a cell-specific manner, but only CPB60g showed correlated 
(linked) chromatin accessibility patterns. g,h, Top motifs enriched in the 
promoter regions (2 kb upstream from the TSS) of defense genes (markers of 
immune-active mesophyll and epidermis clusters 3, 4, 7, 11, and 12) that are 
linked (g) and not linked (h).



Extended Data Fig. 5 | Links between transcriptome and chromatin 
accessibility. a, Scatter plot showing the distribution of the linkage score 
(Pearson correlation coefficient between ACR count and mRNA expression)  
at different distances from TSSs. b, GO enrichment analysis of genes in each 
k-mean cluster shown in (Extended Data Fig. 4c). Adjusted p-values from a 
one-sided hypergeometric test followed by Benjamini-Hochberg correction 
are shown. c, Density plot showing the frequency of linkages at different 
distances from TSS for cluster marker genes and non-marker genes. d, Density 
plot showing the frequency of the size of ACRs for linked or non-linked genes.  

e, Density plot showing the frequency of genes with different numbers of linked 
ACRs. f, Schematic diagram of the ATAC activity analysis. For each gene, ATAC 
reads mapped on the gene body or the 400 bp upstream region were aggregated 
to calculate the score. g, Scatter plot showing the relationship between the 
number of linkages (x-axis) and RNA-ATAC activity correlation score (y-axis).  
h, Scatter plot showing the relationship between the maximum correlation 
coefficient between each gene and linked ACRs (x-axis) and RNA-ATAC activity 
correlation score (y-axis).
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Extended Data Fig. 6 | Identification of TF-gene modules. a,b Heatmaps 
showing (a) enrichment scores of 465 motifs and (b) expression of corresponding 
transcription factors (TF) in each nucleus. The top bars show cluster annotation 
defined in Fig. 1b. c, Heatmap showing Pearson correlation coefficient between 

motif enrichment scores and mRNA expression of the corresponding TFs  
in each cell type (shown in the top bar). All TFs are shown. d, GO enrichment 
analysis of genes predicted to be targeted by TFs shown in Fig. 2h.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | MERFISH data analysis. a, Example raw images of 
MERFISH that capture the same region of tissue across three imaging rounds. 
White spots are signals derived from single mRNA molecules. We observed 
similar results in all independent samples. b, Two-dimensional plots of all the 
transcripts detected by MERFISH in each sample. The number of transcripts  
is shown. c, Spatial expression pattern of ALD1 detected by MERFISH in each 
sample. d, (Left) A field of view (FOV) that shows obscure DAPI nuclei staining 
signal. (Middle) Transcript-based segmentation in the same FOV (see Method). 
Transcripts were colored by assigned cells. (Right) Centroids of cells detected 

by the transcript-based segmentation (red dots) and the result of failed DAPI-
staining-based segmentation (yellow region). Similar patterns were observed 
across FOVs and samples. A systematic quantitative analysis is provided in (f). 
(a,d) Scale bars = 40 µm. e, f, The fraction of transcripts in Cellpose-segmented 
cells fell within Baysor-segmented cells. (e) Cells detected in the field of view (FOV) 
shown in (d) were used. (f) Cells detected in 100 FOVs were used. g, Integrated 
UMAP of all MERFISH data. h, Spatial mapping of de novo MERFISH clusters 
annotated as vasculature. b,c,h Scale bars = 1 mm.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Spatial mapping of whole transcriptome and 
epigenome. a, Imputed mRNA expression of ALD1 (Top) predicted its mRNA 
expression pattern measured with MERFISH (Bottom). Magnified images are 
shown on the right. b, Imputed mRNA expression of ICS1 (Top) predicted its 
mRNA expression pattern measured with smFISH (Bottom). Magnified images 
are shown on the right. c, Imputed ATAC activity (Extended Data Fig. 5f) of  
ICS1 (top) and ALD1 (bottom), which showed consistent patterns with mRNA 
expression (a,b). d, Imputed motif enrichment scores of HsfB2b (Top) was 
consistent with mRNA expression of HsfB2b confirmed by MERFISH (Bottom). 
e, Spatial mapping of pseudotime values based on data integration and label 
transfer between snRNA-seq and MERFISH data of DC3000-infected plants.  

f, smFISH of ICS1 in leaves infected by AvrRpt2 or DC3000 at 24 hpi. g, Spatial 
mapping of bacterial transcripts detected with smFISH in plants infected by 
AvrRpt2 (left) and DC3000 (right) at 24 h post-infection (hpi). Pseudotime 
values are also visualized in the background. Dot size reflects the number of 
bacterial transcripts detected. a-g, Scale bars = 1 mm. h, Scatter plot showing 
the number of bacterial transcripts (x-axis) and averaged pseudotime values  
of five nearest neighbor plant cells (y-axis) for each bacterial colony in plants 
infected by AvrRpt2 (blue) and DC3000 (red) at 24 hpi. i, Averaged pseudotime 
scores of cells surrounding each bacterial colony. The x-axis shows the number 
of nearest plant cells analyzed for each bacterial colony. Shaded error bands 
indicate standard error of the mean.
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Extended Data Fig. 9 | Characterization of PRIMER and bystander cells.  
a, Heatmaps showing expression of ALD1, FMO1, and BON3 in each cell at 9 hpi. 
b, Expression of BON3 shown in the UMAP in Figs. 4a and 5d. BON3 expression is 
enriched in cells with the highest Pseudotime scores. c, Expression of WRKY8 
and LSD1 in the sub-clusters of clusters 3, 7, and 11 in the snRNA-seq data (Fig. 1f). 
d, Violin plot showing expression PUB36 in the PRIMER cell cluster of WT and 
GT-3A knockout (gt3a-KO) plants. The gene model of PUB36, ATAC-seq peaks, 
and a GT-3A binding motif are shown below. e, GO enrichment analysis of genes 
downregulated in a bystander cell cluster of gt3a-KO compared to WT. Adjusted 
p-values from a one-sided hypergeometric test followed by Benjamini-Hochberg 
correction are shown. f, Violin plot showing expression of ALD1 in a bystander 
cluster. d-f, Two independent replicates of each sample were analyzed with 
single-nucleus RNA-seq. g, Expression of BON3 and GT-3A in cells in mock (top) 

or DC3000-infection (bottom) condition. h, Expression of ICS1 in cells infected 
by AvrRpt2. c,g,h, All time points were combined. i, Motif activity of GT-3A  
in immune-active mesophyll cells. j, Lesion area created by Colletotrichum 
higginsianum infection in Col-0 and two independent GT-3A overexpression 
lines and pad3 mutant at 6 days post inoculation. Different letters indicate 
statistical significance (adjusted P < 0.01). Adjusted p-values were calculated 
with two-tailed Student’s t-test followed by Benjamini–Hochberg method. 
n = 45, 35, 30, and 51 leaves for WT, GT-3A-ox1, GT-3A-ox2, and pad3, respectively, 
from three independent replicates. Results are shown as box plots with boxes 
displaying the 25th–75th percentiles, the centerline indicating the median, 
whiskers extending to the minimum, and maximum values no further than  
1.5 interquartile range. k, The gene models of CBP60g and SARD1 with ATAC-seq 
peaks and GT-3A binding motifs.
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